
Copyright © 2018, 2019, 2020, 2021, 2022 the Contributors to the XProc 3.0: An XML Pipeline Language specification, published by

the XProc Next Community Group under the W3C Community Contributor License Agreement (CLA). A human-readable

summary is available.

XProc 3.0: An XML Pipeline
Language
Community Group Report 12 September 2022

Specification:
https://spec.xproc.org/3.0/xproc/

Editors:
Norman Walsh
Achim Berndzen
Gerrit Imsieke
Erik Siegel

Participate:
GitHub xproc/3.0-specification
Report an issue

Errata:
https://spec.xproc.org/3.0/xproc/errata.html

This document is also available in these non-normative formats: XML, PDF (A4), PDF (US
Letter).

Abstract
This specification describes the syntax and semantics of XProc 3.0: An XML Pipeline Language, a
language for describing operations to be performed on documents.

An XML Pipeline specifies a sequence of operations to be performed on documents. Pipelines
generally accept documents as input and produce documents as output. Pipelines are made up
of simple steps which perform atomic operations on documents and constructs such as
conditionals, iterations, and exception handlers which control which steps are executed.

https://www.w3.org/
https://www.w3.org/Consortium/Legal/ipr-notice#Copyright
https://www.w3.org/community/xproc-next/
https://www.w3.org/community/about/agreements/cla/
https://www.w3.org/community/about/agreements/cla-deed/
https://spec.xproc.org/3.0/xproc/
http://github.com/xproc/3.0-specification
http://github.com/xproc/3.0-specification/issues
https://spec.xproc.org/3.0/xproc/errata.html

Status of this Document

This specification was published by the XProc Next Community Group. It is not a
W3C Standard nor is it on the W3C Standards Track. Please note that under the W3C
Community Contributor License Agreement (CLA) there is a limited opt-out and
other conditions apply. Learn more about W3C Community and Business Groups.

If you wish to make comments regarding this document, please send them to xproc-
dev@w3.org. (subscribe, archives).

This document is derived from XProc: An XML Pipeline Language published by the
W3C.

1

Status of this Document

https://www.w3.org/community/xproc-next/
https://www.w3.org/community/about/agreements/cla/
https://www.w3.org/community/about/agreements/cla/
https://www.w3.org/community/
mailto:xproc-dev@w3.org
mailto:xproc-dev@w3.org
mailto:xproc-dev-request@w3.org?subject=subscribe
https://lists.w3.org/Archives/Public/xproc-dev/
https://www.w3.org/TR/2010/REC-xproc-20100511/

1.
1.1.

2.
2.1.
2.1.1.
2.1.2.

3.
3.1.
3.2.
3.2.1.
3.2.2.
3.2.3.
3.2.4.
3.2.5.
3.3.
3.4.

4.
4.1.

5.

6.
6.1.
6.2.

7.
7.1.
7.2.
7.2.1.
7.2.2.

8.
8.1.

Table of Contents
Introduction... 7
Pipeline examples.. 7

Pipeline Concepts.. 13
Steps.. 13

Step names.. 15
Step types.. 18

Documents... 20
Document Properties.. 21
Document Types.. 22

XML Documents.. 23
HTML Documents... 23
Text Documents.. 24
JSON Documents... 25
Other documents.. 25

Creating documents from XDM step results... 25
Specifying content types.. 26

Inputs and Outputs.. 27
External Documents.. 31

Primary Inputs and Outputs.. 32

Connections... 33
Connections and the Default Readable Port... 36
Namespace Fixup on XML Outputs... 38

Initiating a pipeline... 39
Evaluating expressions during static analysis.. 40
Dynamic evaluation of the pipeline... 41

Environment... 41
XPath in XProc.. 43

XPath Extension Functions... 45
System Properties.. 45

2

Table of Contents

8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.
8.9.1.
8.9.2.
8.9.3.
8.9.4.
8.10.
8.11.

9.

10.
10.1.
10.2.

11.
11.1.
11.2.
11.3.
11.4.
11.5.
11.5.1.
11.5.2.
11.6.

12.

13.

14.
14.1.
14.2.

Step Available.. 47
Iteration Position... 48
Iteration Size.. 48
Version Available... 48
XPath Version Available... 49
Document properties.. 49
Document property... 50
Transform file system paths into URIs and normalize URIs.......................... 50

Normalize file separators.. 52
Analysis... 52
Path fixup.. 59
URI construction.. 59

Function library importable... 60
Other XPath Extension Functions... 60

PSVIs in XProc.. 60

Value Templates.. 62
Attribute Value Templates... 64
Text Value Templates.. 64

Variables and Options... 68
Variables... 68
Options... 69
Static Options... 69
Variable and option types.. 70
Implicit casting.. 70

Special rules for casting QNames.. 70
Special rules for casting URIs... 72

Namespaces on variables and options... 72

Security Considerations.. 74

Versioning Considerations... 75

Syntax Overview.. 75
XProc Namespaces.. 76
Scoping of Names.. 77

3

Table of Contents

14.2.1.
14.2.2.
14.2.3.
14.2.4.
14.2.5.
14.3.
14.4.
14.5.
14.6.
14.7.
14.8.
14.9.
14.9.1.
14.9.2.
14.9.3.
14.9.4.
14.9.5.
14.10.
14.11.

15.
15.1.
15.1.1.
15.2.
15.2.1.
15.2.2.
15.3.
15.3.1.
15.3.2.
15.4.
15.4.1.
15.4.2.
15.4.3.
15.5.
15.6.
15.6.1.
15.7.

Scoping of step type names.. 77
Scoping of step names... 78
Scoping of port names... 79
Scoping of non-static options and variables.. 79
Scoping of static option names... 79

Base URIs and xml:base... 80
Unique identifiers.. 80
Associating Documents with Ports.. 80
Documentation.. 83
Processor annotations... 84
Extension attributes.. 84
Common Attributes.. 84

Expand text attributes... 85
Conditional Element Exclusion.. 86
Additional dependent connections... 87
Controlling long running steps.. 88
Status and debugging output... 88

Syntax Summaries... 89
Common errors.. 91

Steps.. 92
Pipelines.. 93

Example... 93
p:for-each.. 94

XPath Context... 96
Example... 96

p:viewport.. 97
XPath Context... 100
Example... 100

p:choose.. 101
p:when... 103
p:otherwise.. 104
Example... 104

p:if.. 105
p:group.. 107

Example... 108
p:try... 108

4

Table of Contents

15.7.1.
15.7.2.
15.7.3.
15.7.4.
15.8.
15.8.1.
15.8.2.

16.
16.1.
16.2.
16.2.1.
16.3.
16.3.1.
16.4.
16.4.1.
16.4.2.
16.4.3.
16.5.
16.5.1.
16.5.2.
16.6.
16.7.
16.8.
16.9.
16.10.
16.10.1.
16.10.2.
16.10.3.
16.10.4.
16.10.5.
16.11.
16.12.
16.13.
16.14.

17.

p:catch.. 111
p:finally.. 112
The Error Vocabulary... 113
Example... 116

Atomic Steps.. 116
Processor-provided standard atomic steps... 117
Extension Steps... 118

Other pipeline elements... 119
p:input... 119
p:with-input... 121

Connection precedence... 124
p:output.. 125

Serialization parameters.. 128
Variables and Options.. 130

p:variable... 130
p:option.. 133
p:with-option.. 135

p:declare-step... 139
Declaring pipelines.. 139
Declaring external steps.. 142

p:library.. 143
p:import.. 144
p:import-functions.. 145
p:pipe.. 147
p:inline.. 147

Inline XML and HTML content.. 149
Inline text content... 151
Inline JSON content... 152
Other inline content... 152
Implicit inlines.. 152

p:document.. 153
p:empty... 154
p:documentation... 154
p:pipeinfo... 154

Errors... 155

5

Table of Contents

17.1.
17.2.
17.3.

A.
A.1.
A.2.
A.3.

B.
B.1.
B.2.

C.
C.1.

D.

E.

F.
F.1.
F.2.
F.3.

G.

H.

I.

J.
J.1.
J.2.

K.

L.

M.

Static Errors.. 155
Dynamic Errors.. 155
Step Errors.. 156

Conformance... 156
Implementation-defined features... 157
Implementation-dependent features.. 161
Infoset Conformance... 162

XPath contexts in XProc.. 163
Processor XPath Context.. 163
Step XPath Context... 167

References.. 170
Normative References.. 170

Glossary... 172

Pipeline Language Summary... 178

List of Error Codes... 185
Static Errors.. 185
Dynamic Errors.. 197
Step Errors.. 203

Guidance on Namespace Fixup (Non-Normative)...................................... 204

Handling Circular and Re-entrant Library Imports (Non-Normative)... 206

Sequential steps, parallelism, and side-effects.. 208

The application/xproc+xml media type... 209
Registration of MIME media type application/xproc+xml.......................... 210
Fragment Identifiers.. 211

Ancillary files.. 212

Credits.. 212

Change Log.. 212

6

Table of Contents

1. Introduction
An XML Pipeline specifies a sequence of operations to be performed on a collection
of input documents. Pipelines take documents (XML, JSON, text, images, etc.) as
their input and produce documents as their output.

A pipeline consists of steps. Like pipelines, steps take documents as their inputs and
produce documents as their outputs. The inputs of a step come from the web, from
the pipeline document, from the inputs to the pipeline itself, or from the outputs of
other steps in the pipeline. The outputs from a step are consumed by other steps, are
outputs of the pipeline as a whole, or are discarded.

There are two kinds of steps: atomic steps and compound steps. Atomic steps carry out a
single operation and have no substructure as far as the pipeline is concerned.
Compound steps control the execution of other steps, which they include in the form
of one or more subpipelines.

[Steps 3.0] defines a standard library of steps. Pipeline implementations may support
additional types of steps as well.

The media type for pipeline documents is application/xml. Often, pipeline
documents are identified by the extension .xpl.

In this specification the words must, must not, should, should not, may and
recommended are to be interpreted as described in [RFC 2119].

1.1. Pipeline examples
Figure 1, “A simple, linear XInclude/Validate pipeline” is a graphical representation
of a simple pipeline that performs XInclude processing and validation on a
document.

7

1. Introduction

Figure 1. A simple, linear XInclude/Validate pipeline

This is a pipeline that consists of two atomic steps, XInclude and Validate with XML
Schema. The pipeline itself has two inputs, “source” (a source document) and
“schemas” (a sequence of W3C XML Schemas). The XInclude step reads the pipeline
input “source” and produces a result document. The Validate with XML Schema step
reads the pipeline input “schemas” and the result of the XInclude step and produces
its own result document. The result of the validation, “result”, is the result of the
pipeline. (For consistency across the step vocabulary, the standard input is usually
named “source” and the standard output is usually named “result”.)

8

1. Introduction

The pipeline document determines how the steps are connected together inside the
pipeline, that is, how the output of one step becomes the input of another.

The pipeline document for this pipeline is shown in Example 1, “A simple, linear
XInclude/Validate pipeline”.

Example 1. A simple, linear XInclude/Validate pipeline

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 name="xinclude-and-validate"
 version="3.0">
 <p:input port="source" primary="true"/>
 <p:input port="schemas" sequence="true"/>
 <p:output port="result">
 <p:pipe step="validated" port="result"/>
 </p:output>

 <p:xinclude name="included">
 <p:with-input port="source">
 <p:pipe step="xinclude-and-validate" port="source"/>
 </p:with-input>
 </p:xinclude>

 <p:validate-with-xml-schema name="validated">
 <p:with-input port="source">
 <p:pipe step="included" port="result"/>
 </p:with-input>
 <p:with-input port="schema">
 <p:pipe step="xinclude-and-validate" port="schemas"/>
 </p:with-input>
 </p:validate-with-xml-schema>
</p:declare-step>

Example 1, “A simple, linear XInclude/Validate pipeline” is very verbose. It makes
all of the connections seen in the figure explicit. In practice, pipelines do not have to
be this verbose. By default, where inputs and outputs are connected between
sequential sibling steps, they do not have to be made explicit.

The same pipeline, using XProc defaults, is shown in Example 2, “A simple, linear
XInclude/Validate pipeline (simplified)”.

9

1. Introduction

Example 2. A simple, linear XInclude/Validate pipeline (simplified)

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 name="xinclude-and-validate"
 version="3.0">
 <p:input port="source" primary="true"/>
 <p:input port="schemas" sequence="true"/>
 <p:output port="result"/>

 <p:xinclude/>

 <p:validate-with-xml-schema>
 <p:with-input port="schema">
 <p:pipe step="xinclude-and-validate" port="schemas"/>
 </p:with-input>
 </p:validate-with-xml-schema>
</p:declare-step>

Figure 2, “A validate and transform pipeline” is a more complex example: it
performs schema validation with an appropriate schema and then styles the
validated document.

10

1. Introduction

Figure 2. A validate and transform pipeline

11

1. Introduction

The heart of this example is the conditional. The “choose” step evaluates an XPath
expression over a test document. Based on the result of that expression, one or
another branch is run. In this example, each branch consists of a single validate step.

Example 3. A validate and transform pipeline

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 name="xinclude-and-validate"
 version="3.0">
 <p:input port="source"/>
 <p:input port="schemas" sequence="true"/>
 <p:output port="result"/>

 <p:choose>
 <p:when test="/*[@version < 2.0]">
 <p:validate-with-xml-schema>
 <p:with-input port="schema" href="v1schema.xsd"/>
 </p:validate-with-xml-schema>
 </p:when>

 <p:otherwise>
 <p:validate-with-xml-schema>
 <p:with-input port="schema" href="v2schema.xsd"/>
 </p:validate-with-xml-schema>
 </p:otherwise>
 </p:choose>

 <p:xslt>
 <p:with-input port="stylesheet" href="stylesheet.xsl"/>
 </p:xslt>
</p:declare-step>

This example, like the preceding, relies on XProc defaults for simplicity. It is always
valid to write the fully explicit form if you prefer. This example also takes advantage
of using the href attribute directly on p:with-input as a shortcut for the
p:document connection.

12

1. Introduction

2. Pipeline Concepts
[Definition: A pipeline is a set of connected steps, with outputs of one step flowing
into inputs of another.] A pipeline is itself a step and must satisfy the constraints on
steps. Connections between steps occur where the input of one step is connected to
the output of another.

The result of evaluating a pipeline (or subpipeline) is the result of evaluating the steps
that it contains, in an order consistent with the connections between them. A pipeline
must behave as if it evaluated each step each time it is encountered. Unless otherwise
indicated, implementations must not assume that steps are functional (that is, that
their outputs depend only on their inputs and options) or side-effect free.

The pattern of connections between steps will not always completely determine their
order of evaluation. The evaluation order of steps not connected to one another is
implementation-dependent.

2.1. Steps
[Definition: A step is the basic computational unit of a pipeline.] A typical step has
inputs, from which it receives documents to process, outputs, to which it sends result
documents, and options which influence its behavior.

There are two kinds of steps: atomic and compound:

• An atomic step is a step that performs a unit of processing on its input, such as
validation or transformation, and has no internal subpipeline. Atomic steps
carry out fundamental operations and can perform arbitrary amounts of
computation, but they are indivisible.

There are many types of atomic steps. The standard library of atomic steps is
described in [Steps 3.0], but implementations may provide others as well. It is
implementation-defined what additional step types, if any, are provided. Each use,
or instance, of an atomic step invokes the processing defined by that type of
step. A pipeline may contain instances of many types of steps and many
instances of the same type of step.

13

2. Pipeline Concepts

• Compound steps, on the other hand, control and organize the flow of documents
through a pipeline, providing familiar programming language functionality
such as conditionals, iterators and exception handling. They contain other steps,
whose evaluation they control.

[Definition: A compound step is a step that contains one or more subpipelines.] That is, a
compound step differs from an atomic step in that its semantics are at least partially
determined by the steps that it contains.

Compound steps either directly contain a single subpipeline or contain several
subpipelines and select one or more to evaluate dynamically. In the latter case,
alternate subpipelines are identified by non-step wrapper elements that each contain
a single subpipeline.

[Definition: A container is either a compound step or one of the non-step wrapper
elements in a compound step that contains several subpipelines.] [Definition: The
steps that occur directly within a container are called that step’s contained steps. In
other words, “container” and “contained steps” are inverse relationships.]
[Definition: The ancestors of a step, if it has any, are its container and the ancestors of
its container.]

[Definition: Sibling steps and variables (and the connections between them) form a
subpipeline.] [Definition: The last step in a subpipeline is its last step in document
order.]

subpipeline = (p:variable|p:for-each|p:viewport|p:choose|p:if|
p:group|p:try|p:standard-step|pfx:user-pipeline)+

Note
When a user-defined pipeline is invoked, (identified with
pfx:user-pipeline in the preceding syntax summary) it appears as
an atomic step. A pipeline declaration may contain a subpipeline, but
the invocation of that pipeline is atomic and does not contain a
subpipeline.

14

2. Pipeline Concepts

Steps have “ports” into which inputs and outputs are connected. Each step has a
number of input ports and a number of output ports; a step can have zero input ports
and/or zero output ports. The names of all ports on each step must be unique on that
step (you can't have two input ports named “source”, nor can you have an input port
named “schema” and an output port named “schema”).

A step may have zero or more options, all with unique names.

2.1.1. Step names

All of the different instances of steps (atomic or compound) in a pipeline can be
distinguished from one another by name. Names can be specified using the (optional)
name attribute. A specified step name must be unique within its scope, see
Section 14.2, “Scoping of Names”.

The main purpose of step names in a pipeline is to explicitly connect to port(s) of
another step. This applies to p:input, p:output, p:with-input, p:with-option
and p:variable, using either a p:pipe child element or a pipe attribute.

The following example uses the step names provided by the name attributes to
explicitly connect ports, using p:pipe child elements. The document on the extra
port of the step gets an additional attribute and is subsequently inserted into the
document on the source port.

15

2. Pipeline Concepts

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0"
 name="main-step">

 <p:input port="source" primary="true"/>
 <p:input port="extra"/>
 <p:output port="result" primary="true"/>

 <p:add-attribute attribute-name="timestamp"
 attribute-value="{current-dateTime()}"
 name="add-timestamp">
 <p:with-input port="source">
 <p:pipe step="main-step" port="extra"/>
 </p:with-input>
 </p:add-attribute>

 <p:insert match="/*" position="first-child">
 <p:with-input port="source">
 <p:pipe step="main-step" port="source"/>
 </p:with-input>
 <p:with-input port="insertion">
 <p:pipe step="add-timestamp" port="result"/>
 </p:with-input>
 </p:insert>

</p:declare-step>

Alternatively, using pipe attributes to connect the ports, you could write this as:

16

2. Pipeline Concepts

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0"
 name="main-step">

 <p:input port="source" primary="true"/>
 <p:input port="extra"/>
 <p:output port="result" primary="true"/>

 <p:add-attribute attribute-name="timestamp"
 attribute-value="{current-dateTime()}"
 name="add-timestamp">
 <p:with-input port="source" pipe="extra@main-step"/>
 </p:add-attribute>

 <p:insert match="/*" position="first-child">
 <p:with-input port="source" pipe="source@main-step"/>
 <p:with-input port="insertion" pipe="result@add-timestamp"/>
 </p:insert>

</p:declare-step>

If the pipeline author does not provide an explicit name using the name attribute, the
processor manufactures a default name. All default names are of the form
“!1.m.n…” where “m” is the position (in the sense of counting sibling elements) of
the step’s highest ancestor element within the pipeline document or library which
contains it, “n” is the position of the next-highest ancestor, and so on, including all of
the elements in the pipeline document (that were not effectively excluded). For
example, consider the pipeline in Example 3, “A validate and transform pipeline”.
The p:declare-step step has no name, so it gets the default name “!1”; the
p:choose gets the name “!1.1”; the first p:when gets the name “!1.1.1”; the
p:otherwise gets the name “!1.1.2”, etc. If the p:choose had a name, it would not
have received a default name, but it would still have been counted and its first
p:when would still have been “!1.1.1”.

Providing every step in the pipeline with an interoperable name has several benefits:

1. It allows implementers to refer to all steps in an interoperable fashion, for
example, in error messages.

2. Pragmatically, we say that readable ports are identified by a step name/port name
pair. By manufacturing names for otherwise anonymous steps, we include
implicit connections without changing our model.

17

2. Pipeline Concepts

In a valid pipeline that runs successfully to completion, the manufactured names
aren't visible (except perhaps in debugging or logging output).

Note
The format for defaulted names does not conform to the
requirements of an NCName. This is an explicit design decision; it
prevents pipelines from using the defaulted names on p:pipe
elements. If an explicit connection requires a step name, the pipeline
author must name the step.

2.1.2. Step types

A step can have a type. Step types are specified using the type attribute of the
p:declare-step element. Step types are used as the name of the element by which
the step is invoked. A specified step type must be unique within its scope, see
Section 14.2, “Scoping of Names”.

Step types are QNames and must be in namespace with a non-null namespace URI.
Steps in the XProc standard and additional step libraries all have types in the XProc
namespace: http://www.w3.org/ns/xproc. When providing your own steps with a
type, which is necessary to use/invoke them in another step, a different (non-null)
namespace must be used.

Step types play an important role in the modularization of pipelines. They allow
steps to be re-used. The following example defines a local step with type
mysteps:add-timestamp-attribute and subsequently uses this twice somewhere
inside its main step’s pipeline:

18

2. Pipeline Concepts

http://www.w3.org/TR/xml-names/#NT-NCName

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0"
 xmlns:mysteps="http://.../ns/mysteps">

 <p:input port="source"/>
 <p:output port="result"/>

 <p:declare-step type="mysteps:add-timestamp-attribute">
 <p:input port="source"/>
 <p:output port="result"/>
 <p:add-attribute attribute-name="timestamp"
 attribute-value="{current-dateTime()}"/>
 </p:declare-step>

 ...
 <mysteps:add-timestamp-attribute/>
 ...
 <mysteps:add-timestamp-attribute/>
 ...

</p:declare-step>

Another way of doing this would be to isolate the
mysteps:add-timestamp-attribute step as a separate, stand-alone, pipeline:

<p:declare-step type="mysteps:add-timestamp-attribute" version="3.0"
 xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:mysteps="http://.../ns/mysteps">
 <p:input port="source"/>
 <p:output port="result"/>
 <p:add-attribute attribute-name="timestamp"
 attribute-value="{current-dateTime()}"/>
</p:declare-step>

Assuming this is stored in a file called add-timestamp-attribute.xpl, you can
now use the p:import element to get it on board:

19

2. Pipeline Concepts

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc" version="3.0"
 xmlns:mysteps="http://.../ns/mysteps">

 <p:import href="add-timestamp-attribute.xpl"/>

 <p:input port="source"/>
 <p:output port="result"/>

 ...
 <mysteps:add-timestamp-attribute/>
 ...

</p:declare-step>

Yet another way of achieving the same result would be to add the
mysteps:add-timestamp-attribute step to an XProc library, using the p:library
root element:

<p:library version="3.0" xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:mysteps="http://.../ns/mysteps">

 <p:declare-step type="mysteps:add-timestamp-attribute">
 <p:input port="source"/>
 <p:output port="result"/>
 <p:add-attribute attribute-name="timestamp"
 attribute-value="{current-dateTime()}"/>
 </p:declare-step>

 ... more library steps

</p:library>

Importing a library is also done with the p:import element.

3. Documents
An XProc pipeline processes documents. [Definition: A document is a representation
and its document properties.]. [Definition: A representation is a data structure used by an
XProc processor to refer to the actual document content.]

20

3. Documents

An output port may have several connections. In this case the document(s) that
appear on that port are sent to each of the connections. In principle, a distinct copy of
each document is sent to each connection. Critically, any changes made to one copy
must not be visible in any other copy. In the interest of efficiency, if an
implementation can isolate such changes, it is not required to make actual copies.

3.1. Document Properties
Documents have associated with them a set of properties. [Definition: The document
properties are key/value pairs; they are exposed to the XProc pipeline as a map
(map(xs:QName, item()*)).]

Several properties are defined by this specification:

content-type
The value of the “content-type” property identifies the media type ([RFC
2046]) of the representation. The “content-type” must always be present. The
processor is responsible for assuring that the content-type property matches
the content type of each document produced on every output port.

base-uri
The value of the “base-uri” property identifies the base URI of the document; it
will only be present if the document has a base URI. For XML documents,
HTML documents, and text documents, the value of “base-uri” is the base URI
property of the document node. For other document types it is a property the
processor keeps track of. If no such key is present, the document has no base
URI.

serialization
The value of the (optional) “serialization” property holds serialization
properties for the document. If present, it’s value must be of type
map(xs:QName, item()*). It is a dynamic error (err:XD0070) if a value is
assigned to the serialization document property that cannot be converted
into map(xs:QName, item()*) according to the rules in Implicit Casting.
Serialization properties control XML serialization as defined by [Serialization].
See also Section 16.3.1, “Serialization parameters”.

21

3. Documents

Some steps, like p:xslt and p:xquery, can specify serialization properties (for
instance using an XSLT xsl:output element). If this is the case, the specified
serialization properties should be returned in the result document(s)
serialization property, as an appropriate serialization properties map.

If a step serializes a document whose document properties contain a
serialization property, it must use these serialization properties. If the step
itself allows specification of serialization properties (usually by a
serialization option), both sets of serialization properties are merged.
Serialization properties specified on the step itself have precedence over
serialization properties specified with the serialization document property.

Other property keys may also be present, including user defined properties.

Steps are responsible for describing how document properties are transformed as
documents flow through them. Many steps claim that the specified properties are
preserved. Generally, it is the responsibility of the pipeline author to determine when
this is inappropriate and take corrective action. However, it is the responsibility of
the pipeline processor to assure that the content-type property is correct. If a step
transforms a document in a manner that is inconsistent with the content-type
property (accepting an XML document on the source port but producing a text
document on the result, for example), the processor must assure that the
content-type property is appropriate. If a step changes the content-type in this
way, it must also remove the serialization property.

3.2. Document Types
XProc 3.0 has been designed to make it possible to process any kind of document.
Each document has a representation in the [XQuery and XPath Data Model 3.1]. This
is necessary so that any kind of document can be passed as an argument to XPath
functions, such as p:document-properties. Practically speaking, there are five
kinds of documents:

1. XML documents

2. HTML documents

3. Text documents

22

3. Documents

4. JSON documents

5. Other documents

3.2.1. XML Documents

Representations of XML documents are general instances of the XDM. They are
documents that contain a mixture of other node types (elements, text, comments, and
processing instructions). This definition is intentionally broader than the definition of
a well-formed XML document because it is often convenient for intermediate stages
in a pipeline to produce more-or-less arbitrary fragments of XML that can be
combined together by later stages. XML documents are identified by an XML media
type. [Definition: The “application/xml” and “text/xml” media types and all
media types of the form “something/something+xml” (except for
“application/xhtml+xml” which is explicitly an HTML media type) are XML media
types.]

In order to be consistent with the XPath data model, all general and external parsed
entities must be fully expanded in XML documents; they must not contain any
representation of [Infoset] [unexpanded entity reference information items].

The level of support for typed values in XDM instances in an XProc pipeline is
implementation-defined.

When an XML document is serialized, it should be serialized using the XML
serializer (see [Serialization]) by default.

3.2.2. HTML Documents

Representations of HTML documents are general instances of the XDM. Within
XProc, they are XML documents. HTML documents are identified by an HTML
media type. [Definition: The “text/html” and “application/xhtml+xml” media
types are HTML media types.]

The distinction between XML documents and HTML documents is apparent in two
places:

23

3. Documents

1. When an HTML document is parsed, for example when it is the result of
querying a web service or is loaded from a file on disk, an HTML parser must be
used. An HTML parser will construct a balanced tree even if the HTML
document would not be seen as well-formed XML if it was parsed by an XML
parser. An HTML parser may also add elements not found in the original (for
example table body elements inside tables).

Note
The HTML parsing rules only apply when the content is parsed.
HTML content in an unencoded p:inline must be well-formed
XML (because it is literally in the pipeline) and will not be
transformed in any way.

2. When an HTML document is serialized, it should be serialized using the HTML
serializer for documents with media type “text/html” and the XHTML
serializer for those with media type “application/xhtml+xml” (see
[Serialization]) by default.

3.2.3. Text Documents

Text documents are identified by a text media type. [Definition: Media types of the
form “text/something” are text media types with the exception of “text/xml” which
is an XML media type, and “text/html” which is an HTML media type.
Additionally the media types “application/javascript”,
“application/relax-ng-compact-syntax”, and “application/xquery” are also
text media types.] It is implementation-defined whether other media types not
mentioned in this document are treated as text media types as well. A text document
is represented by a document node containing a single text node or by an empty
document node (for empty text documents).

When a text document is serialized, it should be serialized using the Text serializer
(see [Serialization]) by default.

24

3. Documents

3.2.4. JSON Documents

Representations of JSON documents are instances of the XDM. They are maps,
arrays, or atomic values. JSON documents are identified by a JSON media type.
[Definition: The “application/json” media type and all media types of the form
“application/something+json” are JSON media types.]

When a JSON document is serialized, it should be serialized using the JSON
serializer (see [Serialization]) by default.

3.2.5. Other documents

Representations of other kinds of documents are empty XDM documents. The
underlying representations of other kinds of documents are implementation-dependent.
Other kinds of documents are identified by media types that are not XML media types,
HTML media types, text media types, or JSON media types.

Serialization of other kinds of documents is implementation-defined. The stored
sequence of octets should be consistent with the media type: an image/png image
should be a PNG image, etc.

3.3. Creating documents from XDM step results
Some steps like p:xslt, p:xquery etc. create a sequence of new XDM instances. The
same is true for the result of a select expression on p:with-input. Values in such a
sequence can be of any XDM type (except attribute or function). Every item in such a
sequence is converted into a separate document that will appear on the output port of
that particular step or as the result of the p:with-input. The following rules apply to
each of the items in the output sequence:

• If the item is a text node, it is wrapped in a document node and the document’s
content-type is text/plain.

• If the item is an element, comment or processing-instruction node, a document
node is wrapped around the node and the document’s content-type is set to
application/xml.

• If the item is a document node, content-type "application/xml" is used.

25

3. Documents

• If the item is a map, array or any atomic value, content-type application/json
is used.

Note
Setting the content-type to application/json for any map,
array or atomic value means that a document with content-type
application/json is not guaranteed serializable using the json
serialization method. For instance, a map with values that
contain sequences cannot be serialized.

3.4. Specifying content types
In some contexts (step inputs, and step outputs, for example), XProc allows the
pipeline author to specify a list of content types to identify what kinds of documents
are allowed. Each content type in this list must have one of the following forms:

• A fully qualified type of the form “type/subtype+ext” where “+ext” is
optional and any of type, subtype, and ext can be specified as “*” meaning
“any”. For example: text/plain (only plain text documents), text/* (any
“text” content type), */*+xml (any “+xml” content type), and */* (any content
type).

• A fully qualified type preceded by a minus sign (“-”) indicates that the specified
type is forbidden. For example: -image/svg forbids SVG images, -text/*
forbids “text” content types, and -text/html forbids HTML documents.

• A single token (without a “/”), is considered a shortcut form. The following
shortcuts must be supported by the processor:

xml
Expands to
“application/xml text/xml */*+xml -application/xhtml+xml”.

html
Expands to “text/html application/xhtml+xml”.

26

3. Documents

text
Expands to: “text/* -text/html -text/xml”.

json
Expands to “application/json”.

any
Expands to “*/*”.

It is a dynamic error (err:XD0079) if a supplied content-type is not a valid media type
of the form “type/subtype+ext” or “type/subtype”. It is implementation-defined if a
processor accepts any other content type shortcuts. It is a static error (err:XS0111) if
an unrecognized content type shortcut is specified.

To determine if a document is acceptable, the (expanded) list of content types is
considered from left to right. If the actual content type matches an acceptable content
type, the document is acceptable. If it matches a forbidden content type, then it is not.
A content type that isn’t matched is ignored. The document is considered acceptable
if and only if it matches at least one acceptable content type and the last content type
that matched was not forbidden.

For example: a document with the content type “image/svg” is acceptable if the
content type list expands to “image/* application/xml” but it is not acceptable if
the content type list expands to “image/* -image/svg”. (Note that order matters;
the document would be considered acceptable if the content type list expands to
“-image/svg image/*”.)

In the particular case of shortcut values, note that “application/xhtml+xml” is
acceptable if the content type list is “xml html” but not if it is “html xml”.

It is a dynamic error (err:XD0038) if an input document arrives on a port and it does
not match the allowed content types.

4. Inputs and Outputs
Most steps have one or more inputs and one or more outputs. Figure 3, “An atomic
step” illustrates symbolically an atomic step with two inputs and one output.

27

4. Inputs and Outputs

Figure 3. An atomic step

All atomic steps are defined by a p:declare-step. The declaration of an atomic step
type defines the input ports, output ports, and options of all steps of that type. For
example, every p:validate-with-xml-schema step has two inputs, named
“source” and “schema”, one output named “result”, and the same set of options.

Like atomic steps, top level, user-defined pipelines also have declarations.

The situation is slightly more complicated for the other compound steps because they
don't have separate declarations; each instance of the compound step serves as its
own declaration. On these compound steps, the number and names of the outputs
can be different on each instance of the step.

Figure 4, “A compound step” illustrates symbolically a compound step with a
subpipeline with one output. As you can see from the diagram, the output from the
compound step comes from one of the outputs of the subpipeline within the step.

28

4. Inputs and Outputs

Figure 4. A compound step

[Definition: The input ports declared on a step are its declared inputs.] [Definition: The
output ports declared on a step are its declared outputs.] When a step is used in a
pipeline, it is connected to other steps through its inputs and outputs.

[Definition: The compound steps p:for-each and p:viewport each declare a single
primary input without a port name. Such an input is called an anonymous input.]

When a step is used, all of the declared inputs of the step must be connected. Each
connection binds the input to a data source (see Section 6, “Connections”). It is a
static error (err:XS0003) if any declared input is not connected.

The declared outputs of a step are only connected when they are used by another step
or expression. Any documents produced on an unconnected output port are
discarded.

Primary input and primary output ports may be implicitly connected if no explicit
connection is given, see Section 5, “Primary Inputs and Outputs”.

Output ports on compound steps have a dual nature: from the perspective of the
compound step’s siblings, its outputs are just ordinary outputs and can be connected

29

4. Inputs and Outputs

the same as other declared outputs. From the perspective of the subpipeline inside the
compound step, they behave like inputs and can be connected just like other inputs.

Within a compound step, the declared outputs of the step can be connected to any of
the various available outputs of contained steps as well as other data sources (see
Section 6, “Connections”). If a (non-primary) output port of a compound step is left
unconnected, it produces an empty sequence of documents from the perspective of
its siblings.

Each input and output on a step is declared to accept or produce either a single
document or a sequence of documents. It is not an error to connect a port that is
declared to produce a sequence of documents to a port that is declared to accept only
a single document. It is, however, an error if the former step does not produce exactly
one document at run time.

It is also not an error to connect a port that is declared to produce a single document
to a port that is declared to accept a sequence. A single document is the same as a
sequence of one document.

An output port may have more than one connection: it may be connected to more
than one input port, more than one of its container’s output ports, or both. At
runtime this will result in the outputs being sent to each of those places.

[Definition: The signature of a step is the set of inputs, outputs, and options that it is
declared to accept.] The declaration for a step provides a fixed signature which all its
instances share.

Note
Within the context of what can be defined by XProc pipelines, step
signatures are fixed and shared by all instances. There is no
mechanism for a pipeline author to declare that an atomic step has a
signature that varies. However, implementors may provide such
mechanisms and other specifications may depend upon them. Such
steps are “magic” and XProc 3.0 makes no effort to provide a
mechanism to define them.

30

4. Inputs and Outputs

[Definition: A step matches its signature if and only if it specifies an input for each
declared input, it specifies no inputs that are not declared, it specifies an option for
each option that is declared to be required, and it specifies no options that are not
declared.] In other words, every input and required option must be specified and
only inputs and options that are declared may be specified. Options that aren't
required do not have to be specified.

Steps may also produce error, warning, and informative messages. These messages
are captured and provided on the error port inside of a p:catch. Outside of a try/
catch, the disposition of error messages is implementation-dependent.

How inputs are connected to documents outside the pipeline is implementation-
defined.

How pipeline outputs are connected to documents outside the pipeline is
implementation-defined.

Input ports may specify a content type, or list of content types, that they accept, see
Section 3.4, “Specifying content types”.

4.1. External Documents
It’s common for some of the documents used in processing a pipeline to be read from
URIs. Sometimes this occurs directly, for example with a p:document element.
Sometimes it occurs indirectly, for example if an implementation allows the URI of a
pipeline input to be specified on the command line or if an p:xslt step encounters
an xsl:import in the stylesheet that it is processing. It’s also common for some of
the documents produced in processing a pipeline to be written to locations which
have, or at least could have, a URI.

The process of dereferencing a URI to retrieve a document is often more interesting
than it seems at first. On the web, it may involve caches, proxies, and various forms
of indirection. Resolving a URI locally may involve resolvers of various sorts and
possibly appeal to implementation-dependent mechanisms such as catalog files.

In XProc, the situation is made even more interesting by the fact that many
intermediate results produced by steps in the pipeline have base URIs. Whether (and

31

4. Inputs and Outputs

when and how) or not the intermediate results that pass between steps are ever
written to a filesystem is implementation-dependent.

In Version 3.0 of XProc, how (or if) implementers provide local resolution
mechanisms and how (or if) they provide access to intermediate results by URI is
implementation-defined.

Version 3.0 of XProc does not require implementations to guarantee that multiple
attempts to dereference the same URI always produce the same results.

Note
On the one hand, this is a somewhat unsatisfying state of affairs
because it leaves room for interoperability problems. On the other, it
is not expected to cause such problems very often in practice.

If these problems arise in practice, implementers are encouraged to
use the existing extension mechanisms to give users the control
needed to circumvent them. Should such mechanisms become
widespread, a standard mechanism could be added in some future
version of the language.

5. Primary Inputs and Outputs
Each step may have one input port designated as the primary input port and one
output port designated as the primary output port.

[Definition: If a step has an input port which is explicitly marked “primary='true'”,
or if it has exactly one document input port and that port is not explicitly marked
“primary='false'”, then that input port is the primary input port of the step.] If a
step has a single input port and that port is explicitly marked “primary='false'”,
or if a step has more than one input port and none is explicitly marked as the
primary, then the primary input port of that step is undefined. A step can have at
most one primary input port.

32

5. Primary Inputs and Outputs

[Definition: If a step has an output port which is explicitly marked
“primary='true'”, or if it has exactly one document output port and that port is not
explicitly marked “primary='false'”, then that output port is the primary output
port of the step.] If a step has a single output port and that port is explicitly marked
“primary='false'”, or if a step has more than one output port and none is explicitly
marked as the primary, then the primary output port of that step is undefined. A step
can have at most one primary output port.

The special significance of primary input and output ports is that they are connected
automatically by the processor if no explicit connection is given. Generally speaking,
if two steps appear sequentially in a subpipeline, then the primary output of the first
step will automatically be connected to the primary input of the second.

Additionally, if a container, that can have declared outputs, has no declared outputs
and the last step in its subpipeline has an unconnected primary output, then an
implicit primary output port will be added to the compound step (and consequently
the last step’s primary output will be connected to it). This implicit output port has
no name. It inherits the sequence and the content-types properties of the port
connected to it. This rule does not apply to p:declare-step; step declarations must
provide explicit names for all of their outputs.

6. Connections
Steps are connected together by their input ports, output ports, and bindings to
variables and options. Variables and options also behave something like steps,
connected together by the input on which they receive their context and by
references to them by name elsewhere. It is a static error (err:XS0001) if there are any
loops in the connections between steps, variables, and options: no step, variable, or
option can be connected to itself nor can there be any sequence of connections
through other steps that leads back to itself.

Consider Figure 5, “Dependencies between steps, variables, and options”.

33

6. Connections

Figure 5. Dependencies between steps, variables, and options

• Step1 has no connections.

• Step2 is connected to Step1 by an explicit dependency, see Section 14.9.3,
“Additional dependent connections”.

34

6. Connections

• Step3 is connected to Step2 because it reads from the output of Step2. It is also
transitively connected to Step1 because Step2 is connected to it.

• Step4 has no connections. In principle, Step1 and Step4 can be evaluated in
parallel or in either order.

• Step5 is connected to Step3 because it reads from the output of Step3. It is also
transitively connected to Step2 and the connections that Step2 has. Step5 is also
connected to Step4 because it’s option “option1” is connected to “someVar”
which is connected to “ecount” which reads its context from Step4.

• Step6 is connected to Step5 because it reads from the output of Step5. It is also
transitively connected to all of the other steps.

[Definition: A connection associates an input or output port with some data source.]
Such a connection represents a binding between the port’s name and the data source
as described by various locations, inline expressions, or readable ports.

An input port can be connected to:

• The output port of some other step.

• A fixed, inline document.

• A document read from a URI.

• One of the inputs declared on one of its ancestors or a special port provided by an
ancestor compound step, for example, “current” in a p:for-each or
p:viewport.

When an input accepts a sequence of documents, the documents can come from any
combination of these locations.

In contrast, output ports are connected when they are referenced by another input
port, declared output or other expression and may be connected to:

• The input port or input context of some other step.

• An option assigned with p:with-option or a p:variable in a compound step.

35

6. Connections

• A value template in an immediately following step. This can be an AVT in an
option shortcut, an AVT on a p:document element, or a value template in a
p:inline.

• One of the outputs declared on its container.

As with an input, the output can be a sequence of documents constructed from any
combination of the above.

Within the context of a compound step, the declared outputs of the compound step must
describe their connections. The set of possibilities for this connection is exactly the
same set as for any other input port within the current environment.

6.1. Connections and the Default Readable Port
The default readable port is a convenience for pipeline authors. In the document which
describes a pipeline, steps are sequential elements and it is very common for the
output of one step to form the natural input to the step described by its immediately
following sibling. Consider the following fragment:

<p:add-xml-base/>

<p:add-attribute attribute-name="element-count"
 attribute-value="{count(/*/*)}"/>

The output from the add XML base step is the natural input to the add-attribute step.
The add XML base step is the source for both the document that will be processed by
the add-attribute step and the document that will be used as the context item for the
expression in the attribute-value attribute.

The fact that the output of the default readable port is used by the following step
establishes a connection between the add XML base step and the add-attribute step.

However, unlike an explicit binding which always forms a connection, the default
readable port only forms a connection if it is used. If the processor determines that the
default readable port is not used, then it must forgo the connection and the steps can
run in parallel.

Consider the following fragment:

36

6. Connections

<p:add-xml-base/>

<p:add-attribute attribute-name="class"
 attribute-value="homepage">
 <p:with-input port="source">
 <p:document href="http://example.com/"/>
 </p:with-input>

The output of the add XML base step is still the default readable port, but it isn’t the
source for the add-attribute step nor is the context item used in evaluating the
attribute-value option (or any other option, including the default values of
unspecified options), so the processor must omit the connection. This leads to
increased parallelism and possibly improved performance.

However, it can cause unexpected results when steps have side-effects. Consider this
slightly contrived pipeline fragment:

<p:file-touch href="tempdoc.stamp"/>

<p:file-copy href="tempdoc.stamp" target="time.stamp"/>

<p:file-delete href="tempdoc.stamp"/>

Each of the file steps has a primary output port and consequently provides a default
readable port to the following step. Even though the file steps don’t have input ports,
the document on the default readable port is the context item for evaluating the
options on each step.

However, an implementation will observe that none of the options use the context
item (and there are no inputs). Consequently, there are no connections between these
steps and they can be run in an arbitrary order, or even in parallel. Running delete,
followed by copy, followed by touch would be perfectly correct but would not have
the side-effects expected by the pipeline author.

There’s a trade-off here between giving implementations the freedom to execute
pipelines more efficiently and not violating user expectations. In practice, this
problem only arises when scheduling steps that have side effects, steps with side
effects are (relatively) uncommon, and by their nature are impossible for the
processor to schedule with complete confidence.

37

6. Connections

The pipeline author can make the dependencies explicit in the pipeline, which will
ensure that the processor schedules the steps in an order that has the desired the
side-effects:

<p:file-touch name="touchstamp" href="tempdoc.stamp"/>

<p:file-copy name="copystamp" depends="touchstamp"
 href="tempdoc.stamp" target="time.stamp"/>

<p:file-delete depends="copystamp"
 href="tempdoc.stamp"/>

Explicitly marking the dependencies between steps that have side effects is good
practice.

6.2. Namespace Fixup on XML Outputs
XProc processors are expected, and sometimes required, to perform namespace fixup
on XML outputs. Unless the semantics of a step explicitly says otherwise:

• The in-scope namespaces associated with a node (even those that are inherited
from namespace bindings that appear among its ancestors in the document in
which it appears initially) are assumed to travel with that node.

• Changes to one part of a tree (wrapping or unwrapping a node or renaming an
element, for example) do not change the in-scope namespaces associated with
the descendants of the node so changed.

As a result, some steps can produce XML documents which have no direct
serialization (because they include nodes with conflicting or missing namespace
declarations, for example). [Definition: To produce a serializable XML document, the
XProc processor must sometimes add additional namespace nodes, perhaps even
renaming prefixes, to satisfy the constraints of Namespaces in XML. This process is
referred to as namespace fixup.]

Implementors are encouraged to perform namespace fixup before passing documents
between steps, but they are not required to do so. Conversely, an implementation
which does serialize between steps and therefore must perform such fixups, or reject
documents that cannot be serialized, is also conformant.

38

6. Connections

Except where the semantics of a step explicitly require changes, processors are
required to preserve the information in the documents and fragments they
manipulate. In particular, the information corresponding to the [Infoset] properties
[attributes], [base URI], [children], [local name], [namespace name],
[normalized value], [owner], and [parent] must be preserved.

The information corresponding to [prefix], [in-scope namespaces],
[namespace attributes], and [attribute type] should be preserved, with
changes to the first three only as required for namespace fixup. In particular,
processors are encouraged to take account of prefix information in creating new
namespace bindings, to minimize negative impact on prefixed names in content.

Except for cases which are specifically called out in [Steps 3.0], the extent to which
namespace fixup, and other checks for outputs which cannot be serialized, are
performed on intermediate outputs is implementation-defined.

Whenever an implementation serializes XML, for example for pipeline outputs,
logging, or as part of steps such as p:store or p:http-request, it is a dynamic error
if that serialization can not be done so as to produce a document which is both well-
formed and namespace-well-formed, as specified in XML and Namespaces in XML.

7. Initiating a pipeline
Initiating a pipeline necessarily involves two activities: static analysis and dynamic
evaluation. [Definition: Static analysis consists of those tasks that can be performed by
inspection of the pipeline alone, including the binding of static options, computation
of serialization properties and document-properties, evaluation of use-when
expressions, performing a static analysis of all XPath expressions, and detecting static
errors.] [Definition: Dynamic evaluation consists of tasks which, in general, cannot be
performed out until a source document is available.]

It is a static error (err:XS0107) in XProc if any XPath expression or the XSLT selection
pattern in option match on p:viewport contains a static error (error in expression
syntax, references to unknown variables or functions, etc.). Type errors, even if they
are determined during static analysis, must not be raised statically by the XProc
processor.

39

7. Initiating a pipeline

There may be an implementation-defined mechanism for providing default values for
static p:options. If such a mechanism exists, the values provided must match the
sequence type declared for the option, if such a declaration exists.

7.1. Evaluating expressions during static analysis
Several kinds of expressions are evaluated during static analysis:

1. The select expressions on static options.

2. Value templates in the attributes or descendants of p:input and p:output and
map attributes on those descendants.

3. Expressions in use-when attributes used for conditional element exclusion.

For the purposes of evaluating a these expressions, the initial context node, position,
and size are all undefined. The in-scope bindings are limited to the lexically preceding,
statically declared options. There are no available collections.

Options declared as the direct children of p:library in imported libraries are
considered in-scope for the declarations that follow.

The entire expression must be evaluated without reference to the non-static inputs to
the pipeline. Expressions can access documents as long as they are available
statically.

Consider:

<p:declare-step version="3.0"
 xmlns:p="http://www.w3.org/ns/xproc">
 <p:input port="source"/>
 <p:option name="A" static="true"
 select="5"/>
 <p:option name="B" static="true"
 select="$A + count(doc('doc.xml')//*)" />
 <p:variable name="D" select="count(//*)"/>

 …
</p:declare-step>

40

7. Initiating a pipeline

The value of $A will be 5, unless a different value is provided before static analysis.
The value of $B will be the value of $A plus the number of elements in doc.xml which
must be successfully resolved during static analysis. Although $D can reference the
document provided dynamically on the source port, neither $A nor $B may.

Note
There is no guarantee that the document read from doc.xml during
static analysis will be the same as the document read later during
dynamic evaluation. See Section 4.1, “External Documents” for
further discussion.

The results of XProc extension functions may differ during static analysis, as
described in the description of each function.

Any errors that occur while evaluating expressions during static analysis will be
raised statically.

7.2. Dynamic evaluation of the pipeline
Dynamic evaluation of the pipeline occurs when it begins to process documents. The
processor evaluates any expressions necessary to provide all of the input documents
and options required. The step processes the input documents and produces outputs
which flow through the pipeline.

Unless otherwise specified, expressions that appear in attribute values (attribute value
templates, map and array initializers that are always treated as expressions, etc.) get
their context item from the default readable port. If there is no default readable port, the
context item is undefined.

7.2.1. Environment

[Definition: The environment is a context-dependent collection of information
available within subpipelines.]

The environment consists of:

41

7. Initiating a pipeline

1. A set of readable ports. [Definition: The readable ports are a set of step name/port
name pairs.] Inputs and outputs can only be connected to readable ports.

2. A default readable port. [Definition: The default readable port, which may be
undefined, is a specific step name/port name pair from the set of readable
ports.]

3. A set of in-scope bindings. [Definition: The in-scope bindings are a set of name-
value pairs, based on option and variable bindings.]

[Definition: The empty environment contains no readable ports, an undefined default
readable port, and no in-scope bindings.]

Unless otherwise specified, the environment of a contained step is its inherited
environment. [Definition: The inherited environment of a contained step is an
environment that is the same as the environment of its container with the standard
modifications.]

The standard modifications made to an inherited environment are:

1. The declared inputs of the container are added to the readable ports.

In other words, contained steps can see the inputs to their container.

2. The union of all the declared outputs of all of the step’s sibling steps are added
to the readable ports.

In other words, sibling steps can see each other’s outputs in addition to the
outputs visible to their container.

3. If there is a preceding sibling step element:

◦ If that preceding sibling has a primary output port, then that output port
becomes the default readable port.

◦ Otherwise, the default readable port is undefined.

4. If there is not a preceding sibling step element:

◦ If the container has a primary input port, the default readable port is that
primary input port.

42

7. Initiating a pipeline

◦ Otherwise, the default readable port is unchanged.

A step with no parent inherits the empty environment.

Variables and options are lexically scoped. The environment of a step also includes
the in-scope bindings for all of the variables and options “visible” from its lexical
position. Variables and options can shadow each other; only the lexically most recent
bindings are visible.

7.2.1.1. Initial Environment

When a pipeline is invoked by a processor, an initial environment is constructed.
[Definition: An initial environment is a connection for each of the readable ports and a set
of option bindings used to construct the initial in-scope bindings.] This environment is
used in place of the empty environment that might have otherwise been provided.

An invoked pipeline’s initial environment is different from the environment
constructed for the sub-pipeline of a declared step. The initial environment is
constructed for the initial invocation of the pipeline by the processor outside the
application. Steps that are subsequently invoked construct an environment as
specified in Section 16.5.1, “Declaring pipelines”.

When constructing an initial environment, an implementation is free to provide any
set of mechanisms to construct connections for the input ports of the invoked step.
These mechanisms are not limited to the variety of mechanisms described within this
specification. Any extensions are implementation defined.

The set of in-scope bindings are constructed from a set of option name/value pairs.
Each option value can be a simple string value, a specific data type instance (e.g.
xs:dateTime), or a more complex value like a map item. How these values are
specified is implementation defined.

7.2.2. XPath in XProc

XProc uses XPath 3.1 as an expression language. XPath expressions are evaluated by
the XProc processor in several places: on compound steps, to compute the default

43

7. Initiating a pipeline

values of options and the values of variables; on atomic steps, to compute the actual
values of options.

XPath expressions are also passed to some steps. These expressions are evaluated by
the implementations of the individual steps.

This distinction can be seen in the following example:

<p:variable name="home" select="'http://example.com/docs'"/>

<p:load name="read-from-home">
 <p:with-option name="href" select="concat($home,'/document.xml')"/>
</p:load>

<p:split-sequence name="select-chapters" test="@role='chapter'">
 <p:with-input port="source" select="//section"/>
</p:split-sequence>

The select expression on the variable “home” is evaluated by the XProc processor. The
value of the variable is “http://example.com/docs”.

The href option of the p:load step is evaluated by the XProc processor. The actual
href option received by the step is simply the string literal
“http://example.com/docs/document.xml”. (The select expression on the source
input of the p:split-sequence step is also evaluated by the XProc processor.)

The XPath expression “@role='chapter'” is passed literally to the test option on
the p:split-sequence step. That’s because the nature of the p:split-sequence is
that it evaluates the expression. Only some options on some steps expect XPath
expressions.

The XProc processor evaluates all of the XPath expressions in select attributes on
variables, options, and inputs, in match attributes on p:viewport, and in test
attributes on p:when and p:if steps.

See Appendix B, XPath contexts in XProc for a detailed description of the context.

44

7. Initiating a pipeline

8. XPath Extension Functions
The XProc processor must support the additional functions described in this section
in XPath expressions evaluated by the processor.

These functions must not be supported in XPath expressions evaluated by a step. In
the interest of interoperability and to avoid imposing unnecessary constraints on
implementors, XPath expressions inside, for example, a template in an XSLT step,
cannot be aware of the XProc-defined functions.

8.1. System Properties
XPath expressions within a pipeline document can interrogate the processor for
information about the current state of the pipeline. Various aspects of the processor
are exposed through the p:system-property function:

p:system-property($property as xs:string) as xs:string

The $property string must have the form of an EQName. If it is a QName, it is
expanded using the namespace declarations in scope for the expression. It is a
dynamic error (err:XD0015) if a QName is specified and it cannot be resolved with
the in-scope namespace declarations. The p:system-property function returns the
string representing the value of the system property identified by the EQName. If
there is no such property, the empty string must be returned.

Implementations must provide the following system properties, which are all in the
XProc namespace:

p:episode
Returns a string which should be unique for each invocation of the pipeline
processor. In other words, if a processor is run several times in succession, or if
several processors are running simultaneously, each invocation of each processor
should get a distinct value from p:episode.

The unique identifier must be a valid XML name.

45

8. XPath Extension Functions

https://www.w3.org/TR/xquery-30/#doc-xquery30-EQName
http://www.w3.org/TR/xml/#NT-Name

p:locale
Returns a string which identifies the current environment (usually the OS)
language. This is useful for, for example, message localization purposes. The
exact format of the language string is implementation-defined but should be
consistent with the xml:lang attribute.

p:product-name
Returns a string containing the name of the implementation, as defined by the
implementer. This should normally remain constant from one release of the
product to the next. It should also be constant across platforms in cases where
the same source code is used to produce compatible products for multiple
execution platforms.

p:product-version
Returns a string identifying the version of the implementation, as defined by the
implementer. This should normally vary from one release of the product to the
next, and at the discretion of the implementer it may also vary across different
execution platforms.

p:vendor
Returns a string which identifies the vendor of the processor.

p:vendor-uri
Returns a URI which identifies the vendor of the processor. Often, this is the URI
of the vendor’s web site.

p:version
Returns the version(s) of XProc implemented by the processor as a space-
separated list. For example, a processor that supports XProc 1.0 would return
“1.0”; a processor that supports XProc 1.0 and 3.0 would return “1.0 3.0”; a
processor that supports only XProc 3.0 would return “3.0”.

p:xpath-version
Returns the version(s) of XPath implemented by the processor for evaluating
XPath expressions on XProc elements. The result is a space-separated list of
versions supported. For example, a processor that only supports XPath 3.1
would return “3.1”; a processor that supports XPath 3.1 and XPath 3.2 could
return “3.1 3.2”.

46

8. XPath Extension Functions

p:psvi-supported
Returns true if the implementation supports passing PSVI annotations between
steps, false otherwise.

Implementations may support additional system properties but such properties must
be in a namespace and must not be in the XProc namespace.

The p:system-property function behaves normally during static analysis. It is
implementation-defined which additional system properties are available during static
analysis. If an additional system property is not available during static analysis, an
empty string must be returned.

8.2. Step Available
The p:step-available function reports whether or not a particular type of step is
understood by the processor and in scope where the function is called.

p:step-available($step-type as xs:string) as xs:boolean

The $step-type string must have the form of an EQName. If it is a QName, it is
expanded using the namespace declarations in scope for the expression. It is a
dynamic error (err:XD0015) if a QName is specified and it cannot be resolved with
the in-scope namespace declarations. The p:step-available function returns true
if and only if the processor knows how to evaluate a step of the specified type where
the function is called.

In case the argument of p:step-available refers to a step that is currently being
defined, the function returns false. In practice this occurs only if:

• p:step-available is used in a use-when expression on or within the
p:declare-step that defines the step to which it refers.

• p:step-available is used in a use-when expression on a p:library that
contains the declaration of the step to which it refers.

The p:step-available behaves normally during static analysis.

47

8. XPath Extension Functions

https://www.w3.org/TR/xquery-30/#doc-xquery30-EQName

8.3. Iteration Position
Some compound steps, such as p:for-each and p:viewport, process a sequence of
documents. The iteration position is the position of the current document in that
sequence: the first document has position 1, the second 2, etc. The
p:iteration-position function returns the iteration position of the nearest
compound step that processes a sequence of documents.

p:iteration-position() as xs:integer

If there is no compound step that processes a sequence of documents among the
ancestors of the element on which the expression involving p:iteration-position
occurs, it returns 1.

The value of the p:iteration-position function during static analysis is 1.

8.4. Iteration Size
Both p:for-each and p:viewport process a sequence of documents. The iteration
size is the total number of documents in that sequence. The p:iteration-size
function returns the iteration size of the nearest ancestor compound step that
processes a sequence of documents.

p:iteration-size() as xs:integer

If there is no p:for-each or p:viewport among the ancestors of the element on
which the expression involving p:iteration-size occurs, it returns 1.

The value of the p:iteration-size function during static analysis is 1.

8.5. Version Available
Returns true if and only if the processor supports the XProc version specified.

p:version-available($version as xs:string) as xs:boolean

48

8. XPath Extension Functions

A version 3.0 processor will return true() when p:version-available('3.0') is
evaluated.

The p:version-available function behaves normally during static analysis.

8.6. XPath Version Available
Returns true if and only if the processor supports the XPath version specified.

p:xpath-version-available($version as xs:string) as xs:boolean

A processor that supports XPath 3.1 will return true() when
p:xpath-version-available('3.1') is evaluated.

The p:xpath-version-available function behaves normally during static analysis.

8.7. Document properties
This function retrieves the document properties of a document as a map.

p:document-properties($doc as item()) as map(xs:QName,item()*)

The map returned contains (exclusively) the document properties associated with the
$doc specified. If the item is not associated with a document, the resulting map will
be empty.

Document properties are associated with documents that flow out of steps.
Documents loaded with XPath functions or through other out-of-band means may
not have properties associated with them. In order to provide a consistent interface
for pipeline authors, the base URI of a node is always returned in the base-uri
property and the content-type property always contains at least the most general
appropriate content type: If the document node has a single text node child,
text/plain is used, application/xml otherwise.

The p:document-properties function behaves normally during static analysis.

49

8. XPath Extension Functions

8.8. Document property
This function retrieves a single value from the document properties of a document.

p:document-property($doc as item(), $key as item()) as item()*

The item returned is the value of the property named $key in the document
properties. An empty sequence is returned if $doc is not associated with a document
or no such key exists. $key is interpreted as follows:

• If $key is of type xs:QName, its value is used unchanged.

• If $key is an instance of type xs:string (or a type derived from xs:string) its
value is transformed into a xs:QName using the XPath EQName production
rules. That is, it can be written as a local-name only, as a prefix plus local-name
or as a URI plus local-name (using the Q{} syntax).

It is a dynamic error (err:XD0061) if $key is of type xs:string and cannot be
converted into a xs:QName.

• If $key is of any other type, the function returns the empty sequence.

The p:document-property function behaves normally during static analysis.

8.9. Transform file system paths into URIs and normalize URIs
Most web technologies identify resources with URIs, but XProc must also operate
with resources that are identified with strings encoded in other ways, for example,
file system paths and the names of resources in archive files.

The p:urify function attempts to transform file system paths into file URIs ([RFC
3986]). If a presumptive yet not fully compliant URI is given as an argument,
p:urify attempts to resolve the string into a URI.

The p:urify function resolves a string into a URI by employing a series of heuristics.
These have been selected so that p:urify will not corrupt any actual, valid URIs and
with the goal that it will return the least surprising result for any other string. If a
pipeline author has more context to determine how a string should be transformed

50

8. XPath Extension Functions

https://www.w3.org/TR/xpath-31/#doc-xpath31-EQName
https://www.w3.org/TR/xpath-31/#doc-xpath31-EQName

into a URI, writing the conversion process “by hand” in the pipeline may achieve
better results.

p:urify($filepath as xs:string, $basedir as xs:string?) as xs:string

p:urify($filepath as xs:string) as xs:string

If the single-argument version of the function is used, the result is the same as calling
the two-argument version with $basedir set to the empty sequence.

The p:urify function behaves normally during static analysis.

The heuristics that p:urify performs occur in two stages: first, the input string is
analyzed to identify its features, then these features are used to construct a final URI
string. An additional “fixup” process may be performed on the path portion of the
URI.

To make the operation of the p:urify function easier to understand, the description
that follows is presented as an algorithm with regular expressions. Implementors are
not required to implement it this way, any implementation that achieves the correct
results can be used.

The function may be implemented as an operation on strings; it need not try to
determine the existence of a file or directory, and it should not follow symbolic links.
However, two pieces of information need to be known from the environment:
Whether the operating system identifies as “Windows” and the value of the file
separator. More precisely, the operating system identifies as Windows if the os-name
property as returned by the p:os-info steps starts with the string “Windows”. The
file separator is what p:os-info returns as the file-separator property. If either of
them are not known, it is assumed that the operating system is not Windows and the
file separator is the forward slash, “/”.

The comparisons and regular expressions that follow are presented in lower case, but
all of the operations performed are case blind: “file”, “FILE”, “File”, and “FiLe” are
all identical.

51

8. XPath Extension Functions

8.9.1. Normalize file separators

Before beginning analysis, if the system file separator is not “/”, then all occurrences
of the file separator in filenames must be replaced by “/”. (If the file separator is “/”,
this section does not apply.)

Replacing file separators with “/” simplifies the analysis that follows and assures
that the resulting URI will be syntactically correct. However, it must only be done
when it is determined that the $filepath will become part of a file: URI.

To determine if the path will become part of a file: URI, consider the following cases
in turn, stopping at the first which applies:

• If the $filepath begins with “file:” or, on Windows, if it begins with a single
letter followed by a colon, it will be part of a file: URI.

• If the $filepath begins with an explicit scheme other than “file”, it will not be
part of a file: URI.

• If the $basedir is absent or the empty string, it will be part of a file: URI.

• If the $basedir begins with an explicit scheme other than “file”, it will not be
part of a file: URI.

• If none of the preceding cases applies, it will be part of a file: URI.

If it has been determined that the path will become part of a file: URI, replace each
occurrence of the file separator character in $filepath with a “/”.

8.9.2. Analysis

The $filepath presented is analyzed to identify the following features:

• The scheme, which may be absent or implicitly known or explicitly known.

• Whether or not the string can be interpreted as hierarchical.

• The authority, which may be absent.

• The drive letter, which may be absent.

52

8. XPath Extension Functions

• And the path, which may be absolute or relative.

The analysis proceeds along the following lines, stopping as soon as the features
have been identified.

1. If the $filepath is the empty string, it has no scheme, no authority, and no
drive letter. Its path is the empty string and it is relative and hierarchical.

2. If the $filepath is the string “//”, it has no scheme, no authority, and no drive
letter. Its path is the string “/” and it is absolute and hierarchical.

3. On a Windows system, if the $filepath matches the regular expression
“^(file:/*)?([a-z]):(.*)”, it is a “file” scheme URI. If the first match group
begins with “file:”, it is an explicit file scheme URI, otherwise it is an implicit file
scheme URI. The drive letter is the second match group. If the third match group
begins with a “/”, the path is absolute and consists of the third match group
with all but one leading “/” removed. Otherwise, the path is relative and
consists of the entire third match group, or the empty string if the third match
group is empty.

In all cases, the scheme is hierarchical and the authority is absent.

For example:

◦ C:Users/Jane/Documents and Files/Thing, an implicit file URI on drive
C with the relative path “Users/Jane/Documents and Files/Thing”.

◦ C:/Users/Jane/Documents and Files/Thing an implicit file URI on drive
C with the absolute path “/Users/Jane/Documents and Files/Thing”.

◦ C://Users/Jane/Documents and Files/Thing an implicit file URI on
drive C with the absolute path “/Users/Jane/Documents and Files/Thing”.

◦ C:///Users/Jane/Documents and Files/Thing an implicit file URI on
drive C with the absolute path “/Users/Jane/Documents and Files/Thing”.

◦ file:C:Users/Jane/Documents and Files/Thing an explicit file URI on
drive C with the relative path “Users/Jane/Documents and Files/Thing”.

53

8. XPath Extension Functions

◦ file:C:/Users/Jane/Documents and Files/Thing an explicit file URI on
drive C with the absolute path “/Users/Jane/Documents and Files/Thing”.

◦ file:C://Users/Jane/Documents and Files/Thing an explicit file URI
on drive C with the absolute path “/Users/Jane/Documents and Files/
Thing”.

◦ file:C:///Users/Jane/Documents and Files/Thing an explicit file URI
on drive C with the absolute path “/Users/Jane/Documents and Files/
Thing”.

4. If the $filepath matches the regular expression “^file://([^/]+)(/.*)?$”, it
is an explicit “file” scheme URI. The first match group is the authority. If the
second match group begins with a “/”, the path is absolute and consists of the
second match group with all but one leading “/” removed. Otherwise, the path
is the empty string and is relative.

In all cases, the scheme is hierarchical and the drive letter is absent.

For example:

◦ file://authority.com an explicit file URI with the authority
“authority.com” and the relative path “”.

◦ file://authority.com/ an explicit file URI with the authority
“authority.com” and the absolute path “/”.

◦ file://authority.com/path/to/thing an explicit file URI with the
authority “authority.com” and the absolute path “/path/to/thing”.

◦ file://authority.com//path/to/thing an explicit file URI with the
authority “authority.com” and the absolute path “/path/to/thing”.

◦ file://authority.com///path/to/thing an explicit file URI with the
authority “authority.com” and the absolute path “/path/to/thing”.

◦ file://authority.com:8080/path/to/thing an explicit file URI with the
authority “authority.com:8080” and the absolute path “/path/to/thing”.

5. If the $filepath matches the regular expression “^file:(.*)$”, it is an explicit
“file” scheme URI. If the first match group begins with a “/”, the path is

54

8. XPath Extension Functions

absolute and consists of the first match group with all but one leading “/”
removed. Otherwise, the path is relative and consists of the entire first match
group, or the empty string if the first match group is empty.

In all cases, the scheme is hierarchical and the drive letter and authority are
absent.

For example:

◦ file: is an explicit file URI with the relative path “”.

◦ file:path/to/thing is an explicit file URI with the relative path
“path/to/thing”.

◦ file:/path/to/thing is an explicit file URI with the absolute path “/
path/to/thing”.

◦ file://path/to/thing does not apply. It matches the preceding case;
“path” is the authority.

◦ file:///path/to/thing is an explicit file URI with the absolute path “/
path/to/thing”.

6. If the $filepath matches the regular expression “^([a-z]+):(.*)$”, it is an
explicit URI in the scheme identified by the first match group. The path is the
second match group. (In the terms of [RFC 3986], it may have an authority
component, but that’s not relevant to p:urify.) If the implementation does not
know if the scheme is hierarchical, it is considered hierarchical if the path
contains a “/”, otherwise it is considered non-hierarchical. (The “http”, “https”,
and “ftp” schemes are hierarchical, for example; the “mailto”, “urn” and “doi”
schemes are not.)

In all cases, the drive letter and authority are absent.

For example:

◦ urn:publicid:ISO+8879%3A1986:ENTITIES+Added+Latin+1:EN is a non-
hierarchical “urn” URI. By the heuristic applied, the path is
“publicid:ISO+8879%3A1986:ENTITIES+Added+Latin+1:EN”, but this will

55

8. XPath Extension Functions

never be relevant as relative and absolute path resolution is never applied to
non-hierarchical schemes.

◦ https: is a hierarchical “https” URI with the relative path “”.

◦ https://example.com is a hierarchical “https” URI with the absolute path
“//example.com”.

◦ https://example.com/ is a hierarchical “https” URI with the absolute path
“//example.com/”.

◦ https://example.com/path/to/thing is a hierarchical “https” URI with
the absolute path “//example.com/path/to/thing”.

◦ https://example.com//path/to/thing is a hierarchical “https” URI with
the absolute path “//example.com//path/to/thing”.

◦ https://example.com:9000/path/to/thing is a hierarchical “https” URI
with the absolute path “//example.com:9000/path/to/thing”.

7. If the $filepath matches the regular expression “^//([^/]+)(/.*)?$”, it has
no scheme. The first match group is the authority. If the second match group
begins with a “/”, the path is absolute and consists of the second match group
with all but one leading “/” removed. Otherwise, the path is the empty string
and is relative. It has no drive letter.

In all cases, the URI is hierarchical and the drive letter is absent.

For example:

◦ //authority has the authority “authority” and the relative path “”.

◦ //authority/ has the authority “authority” and the absolute path “/”.

◦ //authority/path/to/thing has the authority “authority” and the
absolute path “/path/to/thing”.

◦ //authority//path/to/thing has the authority “authority” and the
absolute path “/path/to/thing”.

56

8. XPath Extension Functions

◦ //authority///path/to/thing has the authority “authority” and the
absolute path “/path/to/thing”.

◦ //authority:8080/path/to/thing has the authority “authority:8080” and
the absolute path “/path/to/thing”.

◦ //authority/Documents and Files/thing has the authority “authority”
and the absolute path “/Documents and Files/thing”.

8. If the $filepath begins with a “/”, the path is absolute and consists of
$filepath with all but one leading “/” removed. Otherwise, the path is relative
and consists of the entire $filepath. It is hierarchical and has no scheme, no
authority and no drive letter. (This condition always applies if no preceding
condition does.)

For example:

◦ path/to/thing has the relative path “path/to/thing”.

◦ /path/to/thing has the absolute path “/path/to/thing”.

◦ //path/to/thing does not apply. It matches the preceding case; “path” is
the authority.

◦ ///path/to/thing has the absolute path “/path/to/thing”.

◦ Documents and Files/thing has the relative path “/Documents and
Files/thing”.

◦ /Documents and Files/thing has the absolute path “/Documents and
Files/thing”.

If the analysis determines that the string represents a non-hierarchical URI, the
$filepath is returned unchanged.

If the analysis determines that the scheme is known and the path is absolute, a URI is
constructed from the features, see below. Otherwise, the URI must be made absolute
with respect to the $basedir provided.

If the $basedir is the empty sequence, construct a presumptive URI string from the
string that represents the current working directory. If this presumptive URI does not

57

8. XPath Extension Functions

end with the file separator, append the file separator. If the implementation is
running in an environment where the concept of “current working directory” does
not apply, the presumptive URI is the empty string. This presumptive URI becomes
the $basedir.

Analyze the features of the $basedir.

If the $basedir has no scheme, it’s implicitly a “file” URI.

If the $basedir path is relative, the $filepath cannot be made absolute. It is a
dynamic error (err:XD0074) if no absolute base URI is supplied to p:urify and none
can be inferred from the current working directory.

The following additional constraints apply.

• It is a dynamic error (err:XD0075) if the relative path has a drive letter and the
base URI has a different drive letter or does not have a drive letter.

• It is a dynamic error (err:XD0076) if the relative path has a drive letter and the
base URI has an authority or if the relative path has an authority and the base
URI has a drive letter.

• It is a dynamic error (err:XD0077) if the relative path has a scheme that differs
from the scheme of the base URI.

• It is a dynamic error (err:XD0080) if the $basedir has a non-hierarchical scheme.

Combine the features of the $filepath with the features of the $basedir to obtain a
set of features to use to construct the result.

If the $filepath has no scheme or an implicit file scheme, perform fixup on the path,
as described below. If the $basedir is an implicit file URI, perform fixup on its path.

1. The scheme is the scheme of the $basedir.

2. If the $filepath has an authority, use that authority, otherwise use the authority
of the $basedir, if it has one.

3. The drive letter is the drive letter of the $basedir.

58

8. XPath Extension Functions

4. If the path of the $filepath absolute, that’s the path. Otherwise the path is the
path of the $filepath resolved against the $basedir.

If the $basedir ends in “/”, the resolved path is the concatention of the
$basedir and $filepath’s path. Otherwise, the resolved path is the
concatentation of all the characters in $basedir up to and including the last “/”
it contains with the $filepath’s path.

Path contraction for “.” and “..” is performed on the resolved path according to
Section 3.3 of [RFC 3986].

8.9.3. Path fixup

If fixup is performed, the characters “?”, “#”, “\” and “ ” (space) are replaced by
their percent-encoded forms, “%3F”, “%23”, “%5C”, and “%20”, respectively.

Unreserved characters that are percent encoded in the path are decoded per Section
2.4 of [RFC 3986].

8.9.4. URI construction

The p:urify result string is constructed from the features of the path (or the features
of the path as resolved against the $basedir, if applicable) in the following way:

1. Begin with an empty string.

2. If there is a scheme, append the scheme followed by a “:”.

3. If there is an authority, append “//” followed by the authority.

◦ On a Windows system, if the scheme is known to be file and the processor
determines that the authority component is accessible via the universal
naming convention (UNC), an additional “//” may be added before the
authority. (In other words, file:////uncserver is allowed.)

4. If there is not an authority, but the scheme is “file” and the path is absolute,

◦ Append “//”.

59

8. XPath Extension Functions

◦ If there is a drive letter, append another “/”.

5. If there is a drive letter, append the drive letter followed by a “:”.

6. Append the path.

The string constructed is the p:urify result.

8.10. Function library importable
The p:function-library-importable function reports whether or not function
libraries of a particular type can be imported.

p:function-library-importable($library-type as xs:string) as xs:boolean

The $library-type string is interpreted as a content type. If the processor
understands (i.e. if p:import-functions understands) how to load function libraries
of that type, this function returns true(), otherwise it returns false().

The p:function-library-importable function behaves normally during static
analysis.

8.11. Other XPath Extension Functions
It is implementation-defined if the processor supports any other XPath extension
functions. Additional extension functions, if any, must not use any of the XProc
namespaces.

The value of the any other XPath extension functions during static analysis is
implementation-defined.

9. PSVIs in XProc
XML documents flow between steps in an XProc pipeline. Section A.3, “Infoset
Conformance” identifies the properties of those documents that must be available.
Implementations may also have the ability to pass PSVI annotations between steps.

60

9. PSVIs in XProc

Whether or not the pipeline processor supports passing PSVI annotations between
steps is implementation-defined. The exact PSVI properties that are preserved when
documents are passed between steps is implementation-defined.

A pipeline can use the p:psvi-supported system property to determine whether or
not PSVI properties can be passed between steps.

A pipeline can assert that PSVI support is required with the psvi-required
attribute:

• On a p:declare-step, psvi-required indicates whether or not the declared
step requires PSVI support. It is a dynamic error (err:XD0022) if a processor that
does not support PSVI annotations attempts to invoke a step which asserts that
they are required.

• On a p:library, the psvi-required attribute provides a default value for all of
its p:declare-step children that do not specify a value themselves.

Many of the steps that an XProc pipeline can use are transformative in nature. The
p:delete step, for example, can remove elements and attributes; the
p:label-elements step can add attributes; etc. If PSVI annotations were always
preserved, the use of such steps could result in documents that were inconsistent
with their schema annotations.

In order to avoid these inconsistencies, most steps must not produce PSVI annotated
results even when PSVI passing is supported.

If PSVI passing is supported, the following constraints apply:

1. Implementations must faithfully transmit any PSVI properties produced on step
outputs to the steps to which they are connected.

2. When only a subset of the input is processed by a step (because a select
expression appears on an input port or a match expression is used to process
only part of the input), any PSVI annotations that appear on the selected input
must be preserved in the resulting documents passed to the step.

Note that ID/IDREF constraints, and any other whole-document constraints,
may not be satisfied within the selected portion, irrespective of what its PSVI
properties claim.

61

9. PSVIs in XProc

3. If an output of a compound step is connected to an output which includes PSVI
properties, those properties must be preserved on the output of the compound
step, except for the output of p:viewport which must not contain any PSVI
properties.

4. If an implementation supports XPath 2.0 or later, the data model constructed
with which to evaluate XPath expressions and selection patterns should take
advantage of as much PSVI information as possible.

[Definition: A selection pattern uses a subset of the syntax for path expressions,
and is defined to match a node if the corresponding path expression would
select the node. It is defined as in the XSLT 3.0 specification.]

5. All steps that explicitly behave like the p:identity step under some
circumstances must preserve PSVI properties under those circumstances. In this
specifications, those steps are p:if when the condition is false and p:choose
when no subpipline is selected.

6. Except as specified above, or in the descriptions of individual steps,
implementations must not include PSVI properties in the outputs of steps. It is
implementation-defined what PSVI properties, if any, are produced by extension
steps.

Note
A processor that supports passing PSVI properties between steps is
always free to do so. Even if psvi-required="false" is explicitly
specified, it is not an error for a step to produce a result that includes
additional PSVI properties, provide it does not violate the constraints
above.

10. Value Templates
An attribute or text node in a pipeline may, in particular circumstances, contain
embedded expressions enclosed between curly brackets. Attributes and text nodes

62

10. Value Templates

https://www.w3.org/TR/xslt-30/#dt-selection-pattern

that use (or are permitted to use) this mechanism are referred to respectively as
attribute value templates (AVTs) and text value templates. (TVTs).

[Definition: Collectively, attribute value templates and text value templates are
referred to as value templates.]

A value template is a string that contains zero or more expressions delimited by curly
brackets. Outside an expression, a doubled left or right curly bracket (“{{” or “}}”)
represents a literal, single bracket and does not start or end an expression. Once an
expression begins, it extends to the first unmatched right curly bracket that is not
within a string literal or comment.

Value templates are not recursive. Curly brackets inside an expression are part of that
expression and are not recognized as nested value templates.

It is a static error (err:XS0066) if an expression does not have a closing right curly
bracket or if an unescaped right curly bracket occurs outside of an expression.

It is a static error if the string contained between matching curly brackets in a value
template, when interpreted as an XPath expression, contains errors. The error is
signaled using the appropriate XPath error code.

It is a dynamic error (err:XD0050) if the XPath expression in a value template can not
be evaluated.

It is a dynamic error (err:XD0051) if the XPath expression in an AVT or TVT evaluates
to something to other than a sequence containing atomic values or nodes. Function,
array and map items are explicitly excluded here because they do not have a string
representation.

A value template that contains a reference to the context item reads that context item
from the default readable port. This establishes a connection between the two steps. It is
a dynamic error (err:XD0065) to refer to the context item, size, or position in a value
template if a sequence of documents appears on the default readable port. Value
templates that do not contain a reference to the context item do not establish a
connection to another step and do not require that a default readable port is available.

63

10. Value Templates

10.1. Attribute Value Templates
[Definition: In an attribute that is designated as an attribute value template, an
expression can be used by surrounding the expression with curly brackets ({}),
following the general rules for value templates].

Curly brackets are not treated specially in an attribute value in an XProc pipeline
unless the attribute is specifically designated as one that permits an attribute value
template. Option shortcuts permit attribute value templates. Whether or not an
extension attribute permits attribute value templates is implementation-defined. In
element syntax summaries in this specification, the value of an attribute that allows
attribute value templates is surrounded by curly brackets.

An attribute value template can be seen as an alternating sequence of zero or more
“fixed” (non-expression) parts and expression parts.

The result of the attribute value template is the concatenation of the fixed parts and
the string-value of the result of evaluating each expression part.

Note
This process can generate dynamic errors, for example if the
sequence contains an element with a complex content type (which
cannot be atomized).

The value of an attribute that contains attribute value templates is a single string (the
concatenation of the string values of the evaluated templates and non-template parts)
as an xs:untypedAtomic.

10.2. Text Value Templates
[Definition: In a text node that is designated as a text value template, expressions can
be used by surrounding each expression with curly brackets ({}), following the
general rules for value templates.]

64

10. Value Templates

Text nodes that are descendants of a p:inline and text nodes that are descendants of
an element node in an implicit inline may be text value templates. No other text node
is a text value template.

Whether or not a text node that may be a text value template is designated one is
determined by expand-text and p:inline-expand-text attributes, see
Section 14.9.1, “Expand text attributes”.

A text value template can be seen as an alternating sequence of zero or more “fixed”
(non-expression) parts and expression parts.

This produces a sequence of strings (the fixed parts) and items (the results of
evaluating each expression). Any items that are non-string atomic values are
converted to strings by taking their string value. Strings are converted into text
nodes.

The result of the text value template is this sequence of nodes.

Note
Unlike XSLT, in XProc, text value templates are not atomized and
converted to single text nodes. It is possible to insert nodes with text
value templates in XProc, for example, if the XPath expressions refer
to variables that have node content.

If a node to be inserted with a text value template is a document node, all the
children of the document node are inserted.

How the nodes are inserted depends on the content type of the p:inline.

1. If the content type is an XML media type or an HTML media type, the nodes are
added to the XML document where they occur. This is analogous to the way
element constructors work in [XQuery 1.0].

If the node is an attribute it is added to an element parent if and only if the
attribute either has no preceding nodes in the sequence of nodes or has only
attributes as preceding nodes. It is a dynamic error (err:XD0052) if the XPath

65

10. Value Templates

expression in a TVT evaluates to an attribute and either the parent is not an
element or the attribute has a preceding node that it not an attribute.

2. If the content type is not an XML media type or an HTML media type, each text
value template is replaced by the concatenation of the serialization of the nodes
that result from evaluating the template.

This serialization is performed with the following serialization parameters:

Parameter Value
byte-order-mark false
cdata-section-elements ()
doctype-public ()
doctype-system ()
encoding “utf-8”
escape-uri-attributes false
include-content-type false
indent false
media-type “application/xml”
method “xml”
normalization-form ()
omit-xml-declaration true
standalone false
undeclare-prefixes false
use-character-maps ()
version 1.0

Interpretation of the character content of the p:inline according to the media type
occurs after text value templates have been replaced.

Examples

Consider the following examples. In each case:

66

10. Value Templates

• The variable $name is bound to the following XML element:

 <name><given>Mary</given> <surname>Smith</surname></name>

• The result of evaluating the text value template “{$name/node()}” is a sequence
of three nodes, the given name element, a text node containing a single space,
and the surname element.

If the media type is an XML media type:

 <p:inline content-type="application/xml">
 <attribution>{$name/node()}</attribution>
 </p:inline>

the result is that sequence of nodes:

 <attribution><given>Mary</given> <surname>Smith</surname></attribution>

If the media type is not an XML media type:

 <p:inline content-type="application/json">
 {{ "name": "{$name/node()}" }}
 </p:inline>

the result is the concatenation of the serialization of the nodes:

 { "name": "<given>Mary</given> <surname>Smith</surname>" }

If the string value is desired, instead of escaped markup, write the expression such
that it returns the string values:

 <p:inline content-type="application/json">
 {{ "name": "{$name/node()/string()}" }}
 </p:inline>

To produce:

67

10. Value Templates

 { "name": "Mary Smith" }

11. Variables and Options

11.1. Variables
Pipeline authors can create variables to hold computed values.

[Definition: A variable is a name/value pair. The name must be an expanded name.
The value may be any XPath data model value.] Variable names are always expressed
as literal values, pipelines cannot construct variable names dynamically.

The names of variables and options are not distinct and are lexically scoped.
[Definition: We say that a variable shadows another variable (or option) if it has the
same name and appears later in the same lexical scope.]

Consider this pipeline:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" version="3.0">

 <p:option name="bname" as="xs:integer" select="1"/>
 <p:identity message="NAME1={$bname}">
 <p:with-input port="source">
 <p:empty/>
 </p:with-input>
 </p:identity>

 <p:variable name="bname" select="$bname + 1"/>
 <p:identity message="NAME2={$bname}"/>

 <p:variable name="bname" select="7"/>
 <p:identity message="NAME3={$bname}"/>

</p:declare-step>

If no overriding value is provided for $bname at runtime, the pipeline will produce
three messages: “NAME1=1”, “NAME2=2”, and “NAME3=7”. (If an overriding

68

11. Variables and Options

http://www.w3.org/TR/REC-xml-names/#dt-expname

value is provided at runtime, “NAME1” will have that value, “NAME2” will have
one more than that value, and “NAME3” will have the value 7.

11.2. Options
Some steps accept options. The value of an option is the default value specified in its
declaration, or a value provided by the caller of the step (overriding the default). If it
has neither a default value nor a provided value, its value is the empty sequence.

[Definition: An option is a name/value pair. The name must be an expanded name.
The value may be any XPath data model value.] Option names are always expressed
as literal values, pipelines cannot construct option names dynamically.

How outside values are specified for pipeline options on the pipeline initially
invoked by the processor is implementation-defined. In other words, the command line
options, APIs, or other mechanisms available to specify such options values are
outside the scope of this specification.

Some steps require a set of name/value pairs for the operations they perform. For
example, an XSLT stylesheet might have required parameters or an XQuery query
might have external variables. In the XProc Step Library, the standard way to pass
such values to the step is to use an option named “parameters” whose value is a
map.

11.3. Static Options
A p:option may be declared “static”; options declared within a p:library must be
static.

It is a static error (err:XS0109) if options that are the direct children of p:library are
not declared “static”.

The values of static options are computed during static analysis.

XProc defines a single, global scope for static options. Every static option must have
exactly one in-scope declaration.

69

11. Variables and Options

http://www.w3.org/TR/REC-xml-names/#dt-expname

11.4. Variable and option types
Variables and options may declare that they have a type using the as attribute. The
attribute value must be an [XPath 3.1] sequence type. It is a static error (err:XS0096)
if the sequence type is not syntactically valid. The sequence type item()* is assumed
if no explicit type is provided.

If a variable or option declares a type, the supplied value of the variable or option is
converted to the required type, using the function conversion rules specified by
XPath 3.1. It is a dynamic error (err:XD0036) if the supplied or defaulted value of a
variable or option cannot be converted to the required type.

11.5. Implicit casting
For the most part, the rules for casting between types in XPath work the way authors
expect. You can type “3” for a decimal, you don’t have to type “3.0”, and an untyped
atomic value, for example in an attribute such as limit="3", is implicitly cast to a
number if that’s the required type. You don’t have to type
limit="{xs:integer(3)}".

Unfortunately, there are two common cases in XProc that are not handled by the
XPath conversion rules: conversions from strings to QNames or URIs. (Technically,
conversions from xs:untypedAtomic or xs:string, or from types derived from
xs:string, values to xs:QName or xs:anyURI values.) XProc defines additional
implicit casting rules for the case where an expression is evaluated to provide the
value of a variable or option. (These are not extensions to the XPath rules in the
general case and do not apply in arbitrary expressions.)

11.5.1. Special rules for casting QNames

Some steps have options whose values are QNames, for example “attribute-name”
on p:add-attribute. If the type xs:QName was strictly enforced, they would be
tedious to specify. As a convenience for pipeline authors, the values of variables or
options declared with the type xs:QName are processed specially. The type xs:QName
is treated as xs:anyAtomicType for the purpose of atomization. The value (or values)
are converted to xs:QNames:

70

11. Variables and Options

https://www.w3.org/TR/xpath-31/#dt-sequence-type

1. If the value supplied for the option is an instance of xs:QName then that value is
used.

2. If the value supplied for the option is an instance of xs:untypedAtomic or
xs:string (or a type derived from xs:string), the QName is constructed by
following the EQName production rules in [XPath 3.1]. That is, it can be written
as a local-name only, as a prefix plus local-name, or as a URI qualified name
(using the Q{namespace}local-name syntax). If it is written as local-name only,
the constructed QName will not have a namespace URI, i.e. the default
namespace is not applied here. It is a dynamic error (err:XD0061) if the string
value is not syntactically an EQName. It is a dynamic error (err:XD0069) if the
string value contains a colon and the designated prefix is not declared in the in-
scope namespaces.

3. It is a dynamic error (err:XD0068) if the supplied value is not an instance of
xs:QName, xs:anyAtomicType, xs:string or a type derived from xs:string.

As an additional convenience, if the specified sequence type of an option or a
variable is a map with xs:QName keys (map(xs:QName, …)), the supplied map value
is processed specially. This makes it possible to pass in maps using (easier to write)
xs:string type keys that are converted automatically into the required xs:QName
keys.

Every key/value pair in a map supplied to a variable or an option with sequence
type map(xs:QName, …) is processed as follows:

• If the entry’s key is of type xs:QName, the entry is left unchanged.

• If the entry’s key is an instance of type xs:untypedAtomic or xs:string (or a
type derived from xs:string) it is transformed into an xs:QName using the
XPath EQName production rules as described above.

• If the entry’s key is of any other type, the entry is ignored and will be removed
from the map.

71

11. Variables and Options

https://www.w3.org/TR/xpath-31/#doc-xpath31-EQName
https://www.w3.org/TR/xpath-31/#doc-xpath31-EQName

11.5.2. Special rules for casting URIs

Many steps have options whose values are xs:anyURI values, for example “href” on
p:http-request. If the type xs:anyURI was strictly enforced, they would be tedious
to specify. As a convenience for pipeline authors, the values of variables or options
declared with the type xs:anyURI are processed specially. The value (or values) are
converted to xs:anyURIs:

1. If the value supplied for the option is an instance of xs:anyURI then that value is
used.

2. If the value supplied for the option is an instance of xs:untypedAtomic or
xs:string (or a type derived from xs:string), the xs:anyURI is constructed by
casting the value to an xs:anyURI.

The XPath rules for casting string values to URIs apply: The extent to which an
implementation validates the lexical form of the xs:anyURI is implementation-defined.

11.6. Namespaces on variables and options
Variable and option values carry with them not only their literal or computed value
but also a set of namespaces. To see why this is necessary, consider the following
step:

<p:delete xmlns:p="http://www.w3.org/ns/xproc">
 <p:with-option name="match" select="'html:div'"

 xmlns:html="http://www.w3.org/1999/xhtml"/>
</p:delete>

The p:delete step will delete elements that match the expression “html:div”, but
that expression can only be correctly interpreted if there’s a namespace binding for
the prefix “html” so that binding has to travel with the option.

The default namespace bindings associated with a variable or option value are
computed as follows:

72

11. Variables and Options

1. If the select attribute was used to specify the value and it consisted of a single
VariableReference (per [XPath 3.1]), then the namespace bindings from the
referenced option or variable are used.

2. If the select attribute was used to specify the value and it evaluated to a node-
set, then the in-scope namespaces from the first node in the selected node-set (or,
if it’s not an element, its parent) are used.

The expression is evaluated in the appropriate context, See Section 7.2.2, “XPath
in XProc”.

3. Otherwise, the in-scope namespaces from the element providing the value are
used. (For options specified using syntactic shortcuts, the step element itself is
providing the value.)

The default namespace is never included in the namespace bindings for a variable or
option value. Unqualified names are always in no-namespace.

Unfortunately, in more complex situations, there may be no single variable or option
that can reliably be expected to have the correct set of namespace bindings. Consider
this pipeline:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:ex="http://example.org/ns/ex"
 xmlns:h="http://www.w3.org/1999/xhtml"

 type="ex:delete-in-div" version="3.0">
<p:input port="source"/>
<p:output port="result"/>
<p:option name="divchild" required="true"/>

<p:delete>
 <p:with-option name="match" select="concat('h:div/',$divchild)"/>
</p:delete>

</p:declare-step>

It defines an atomic step (“ex:delete-in-div”) that deletes elements that occur
inside of XHTML div elements. It might be used as follows:

73

11. Variables and Options

<ex:delete-in-div xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:ex="http://example.org/ns/ex"

 xmlns:html="http://www.w3.org/1999/xhtml"
 divchild="html:p[@class='delete']"/>

In this case, the match option passed to the p:delete step needs both the namespace
binding of “h” specified in the ex:delete-in-div pipeline definition and the
namespace binding of “html” specified in the divchild option on the call of that
pipeline. It’s not sufficient to provide just one of the sets of bindings.

If pipeline authors cannot arrange for all of the necessary namespace bindings to be
in scope, then EQNames can be used to remove the dependency on namespace
bindings:

<ex:delete-in-div xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:ex="http://example.org/ns/ex"
 divchild="q{http://www.w3.org/1999/xhtml}p[@class='delete']"/>

In this example, the expression will match “p” elements in the XHTML namespace
irrespective of any bindings that may or may not be in scope.

12. Security Considerations
An XProc pipeline may attempt to access arbitrary network resources: steps such as
p:load and p:http-request can attempt to read from an arbitrary URI; steps such
as p:store can attempt to write to an arbitrary location; p:exec can attempt to
execute an arbitrary program. Note, also, that some steps, such as p:xslt and
p:xquery, include extension mechanisms which may attempt to execute arbitrary
code.

In some environments, it may be inappropriate to provide the XProc pipeline with
access to these resources. In a server environment, for example, it may be impractical
to allow pipelines to store data. In environments where the pipeline cannot be
trusted, allowing the pipeline to access arbitrary resources or execute arbitrary code
may be a security risk.

74

12. Security Considerations

It is a dynamic error (err:XD0021) for a pipeline to attempt to access a resource for
which it has insufficient privileges or perform a step which is forbidden. Which steps
are forbidden, what privileges are needed to access resources, and under what
circumstances these security constraints apply is implementation-dependent.

Steps in a pipeline may call themselves recursively which could result in pipelines
which will never terminate.

A conformant XProc processor may limit the resources available to any or all steps in
a pipeline. A conformant implementation may raise dynamic errors, or take any
other corrective action, for any security problems that it detects.

13. Versioning Considerations
A pipeline author may identify the version of XProc for which a particular pipeline
was authored by setting the version attribute. The version attribute can be
specified on p:declare-step or p:library. If specified, the value of the version
attribute must be a xs:decimal. It is a static error (err:XS0063) if the value of the
version attribute is not a xs:decimal.

The version of XProc defined by this specification is “3.0”.

A pipeline author must identify the version of XProc on the document element of a
pipeline document. It is a static error (err:XS0062) if a required version attribute is
not present.

The version identified applies to the element on which the version attribute appears
and all of its descendants, unless or until another version is explicitly identified.

XProc 3.0 takes a draconian approach to versioning. It is a static error (err:XS0060) if
the processor encounters an explicit request for a version of the language other than
“3.0”.

14. Syntax Overview
This section describes the normative XML syntax of XProc. This syntax is sufficient to
represent all the aspects of a pipeline, as set out in the preceding sections. [Definition:

75

13. Versioning Considerations

XProc is intended to work equally well with [XML 1.0] and [XML 1.1]. Unless
otherwise noted, the term “XML” refers equally to both versions.] [Definition: Unless
otherwise noted, the term Namespaces in XML refers equally to [Namespaces 1.0] and
[Namespaces 1.1].] Support for pipeline documents written in XML 1.1 and pipeline
inputs and outputs that use XML 1.1 is implementation-defined.

Elements in a pipeline document represent the pipeline, the steps it contains, the
connections between those steps, the steps and connections contained within them,
and so on. Each step is represented by an element; a combination of elements and
attributes specify how the inputs and outputs of each step are connected and how
options are passed. Outside of inline documents (p:inline elements explicitly or
implicitly), text nodes that consist entirely of whitespace and XML comments are
ignored. XML processing instructions are also generally ignored. It is implementation-
defined if any processing instructions are significant to an implementation. In an
inline document, all markup is treated as if it was a quoted part of the inline
document and no special semantics apply except as noted elsewhere in this
specification.

Conceptually, we can speak of steps as objects that have inputs and outputs, that are
connected together and which may contain additional steps. Syntactically, we need a
mechanism for specifying these relationships.

Containment is represented naturally using nesting of XML elements. If a particular
element identifies a compound step then the step elements that are its immediate
children form its subpipeline.

The connections between steps are expressed using names and references to those
names.

14.1. XProc Namespaces
There are three namespaces associated with XProc:

http://www.w3.org/ns/xproc
The namespace of the XProc XML vocabulary described by this specification; by
convention, the namespace prefix “p:” is used for this namespace.

76

14. Syntax Overview

http://www.w3.org/ns/xproc-step
The namespace used for documents that are inputs to and outputs from several
standard and optional steps described in this specification. Some steps, such as
p:http-request and p:store, have defined input or output vocabularies. We
use this namespace for all of those documents. The conventional prefix “c:” is
used for this namespace.

http://www.w3.org/ns/xproc-error
The namespace used for errors. The conventional prefix “err:” is used for this
namespace.

This specification also makes use of the prefix “xs:” to refer to the [W3C XML
Schema: Part 1] namespace http://www.w3.org/2001/XMLSchema and the prefix
“xsi:” to refer to the namespace http://www.w3.org/2001/XMLSchema-instance

14.2. Scoping of Names
Names are used to identify step types, steps, ports, options and variables. Step types,
options, and variables are named with EQNames. Steps and ports are named with
NCNames. The scope of a name is a measure of where it is available in a pipeline.
[Definition: If two names are in the same scope, we say that they are visible to each
other.]

Within a p:library, declaring that the visibility of a step or static option is
“private” limits its visibility outside of the library. Note, however, that if other
declarations of the same name are visible from the point where the private
declaration occurs, that is still an error.

14.2.1. Scoping of step type names

The scope of the names of the step types is the pipeline in which they are declared,
including any declarations imported from libraries via p:import. Nested pipelines
inherit the step types in scope for their parent.

In other words, the step types that are in scope in a p:declare-step are:

• The standard, built-in types (p:declare-step, p:choose, etc.).

77

14. Syntax Overview

• Any implementation-provided types.

• Any step types declared in the p:declare-step children of the pipeline
element.

• The types of any p:declare-steps that are imported.

• Any public types that are in the scope of any p:library that is imported.

• Any step types that are in scope for the pipeline’s parent p:declare-step, if it
has one.

• The type of the pipeline itself, if it has one.

The step types that are in scope in a p:library are:

• The standard, built-in types (p:declare-step, p:choose, etc.).

• Any implementation-provided types.

• Any step types declared in the library (the p:declare-step children of the
p:library element).

• The types of p:declare-steps that are imported into the library.

• Any public types that are in the scope of any p:library that is imported.

All the step types in a pipeline or library must have unique names: it is a static
error (err:XS0036) if any step type name is built-in and/or declared or defined more
than once in the same scope.

14.2.2. Scoping of step names

The scope of the names of the steps (the values of the step’s name attributes) is
determined by the environment of each step. In general, the name of a step, the names
of its sibling steps, the names of any steps that it contains directly, the names of its
ancestors, and the names of the siblings of its ancestors are all in a common scope.
All steps in the same scope must have unique names: it is a static error (err:XS0002)
if two steps with the same name appear in the same scope.

78

14. Syntax Overview

14.2.3. Scoping of port names

The scope of an input or output port name is the step on which it is defined. The
names of all the ports on any step must be unique.

Taken together with the scoping of step names, these uniqueness constraints
guarantee that the combination of a step name and a port name uniquely identifies
exactly one port on exactly one in-scope step.

14.2.4. Scoping of non-static options and variables

The scope of non-static option and variable names is determined by where they are
declared. Their scope consists of the sibling elements that follow its declaration and
the descendants of those siblings.

Non-static options and variables declared in parent step declarations are not visible
in child step declarations.

14.2.5. Scoping of static option names

The scope of the names of static options is the pipeline in which they are declared,
including any declarations imported from libraries via p:import. Nested pipelines
inherit the static options in scope for their parent.

In other words, the step options that are in scope in a p:declare-step are:

• Any static options declared in the step.

• Any public static options that are in the scope of any p:library that is
imported.

• Any static options that are in scope for the pipeline’s parent p:declare-step, if
it has one.

The static options that are in scope in a p:library are:

• Any static options declared in the library (the p:option children of the
p:library element).

79

14. Syntax Overview

• Any public static options that are in the scope of any p:library that is
imported.

All the static options in a pipeline or library must have unique names: it is a static
error (err:XS0071) if any static option name is declared more than once in the same
scope.

14.3. Base URIs and xml:base
If a relative URI appears in an option of type xs:anyURI, the base URI against which
it must be made absolute is the base URI of the p:option element. If the option value
is specified using a syntactic shortcut, the base URI of the step element on which the
shortcut attribute appears must be used. In general, whenever a relative URI appears
in an xs:anyURI, its base URI is the base URI of the nearest ancestor element.

The pipeline author can control the base URIs of elements within the pipeline
document with the xml:base attribute. The xml:base attribute may appear on any
element in a pipeline and has the semantics outlined in [XML Base].

For XML documents, HTML documents, and text documents, the pipeline author can
control the base URI of the document node by manipulating the document property
“base-uri”.

14.4. Unique identifiers
A pipeline author can provide a globally unique identifier for any element in a
pipeline with the xml:id attribute.

The xml:id attribute may appear on any element in a pipeline and has the semantics
outlined in [xml:id].

14.5. Associating Documents with Ports
A document or a sequence of documents can be connected to a port in four ways: by
source, by URI, by providing an inline document, or by making it explicitly empty. Each

80

14. Syntax Overview

of these mechanisms is allowed where connections may be made, except that
p:input may not include a connection by source.

Specified by URI
[Definition: A document is specified by URI if it is referenced with a URI.] The
href attribute on the p:document element is used to refer to documents by URI.

In this example, the input to the p:identity step named “otherstep” comes
from “http://example.com/input.xml”.

<p:output port="result"/>

<p:identity name="otherstep">
 <p:with-input port="source">
 <p:document href="http://example.com/input.xml"/>
 </p:with-input>
</p:identity>

See the description of p:document for a complete description of how URIs may
be specified.

Specified by source
[Definition: A document is specified by source if it references a specific port on
another step.] The step and port attributes on the p:pipe element are used for
this purpose.

In this example, the “source” input to the p:xinclude step named “expand”
comes from the “result” port of the step named “otherstep”.

<!-- there's no otherstep so this isn't expected to work... -->
<p:xinclude name="expand">
 <p:with-input port="source">
 <p:pipe step="otherstep" port="result"/>
 </p:with-input>
</p:xinclude>

See the description of p:pipe for a complete description of the ports that can be
connected.

81

14. Syntax Overview

Specified inline
[Definition: An inline document is specified directly in the body of the element to
which it connects.] The content of the p:inline element is used for this purpose.

In this example, the “stylesheet” input to the XSLT step named “xform” comes
from the content of the p:with-input element itself.

<p:xslt name="xform">
 <p:with-input port="stylesheet">
 <p:inline>
 <xsl:stylesheet version="1.0">
 ...
 </xsl:stylesheet>
 </p:inline>
 </p:with-input>
</p:xslt>

Inline documents are considered “quoted”. The pipeline processor passes them
literally to the port, even if they contain elements from the XProc namespace or
other namespaces that would have other semantics outside of the p:inline.

See the description of p:inline for a complete description of how inline
documents may be specified.

Specified explicitly empty
[Definition: An empty sequence of documents is specified with the p:empty
element.]

In this example, the “source” input to the XSLT 2.0 step named “generate” is
explicitly empty:

82

14. Syntax Overview

<p:xslt name="generate" version="2.0">
 <p:with-input port="source">
 <p:empty/>
 </p:with-input>
 <p:with-input port="stylesheet">
 <p:inline>
 <xsl:stylesheet version="2.0">
 ...
 </xsl:stylesheet>
 </p:inline>
 </p:with-input>
 <p:with-option name="template-name" select="'someName'"/>
</p:xslt>

If you omit the connection on a primary input port, a connection to the default
readable port will be assumed. Making the connection explicitly empty guarantees
that the connection will be to an empty sequence of documents.

See the description of p:empty for a complete description of empty connections.

Note that a p:input, p:with-input, or p:output element may contain more than
one p:pipe, p:document, or p:inline element. If more than one connection is
provided, then the specified sequence of documents is made available on that port in
the same order as the connections.

14.6. Documentation
Pipeline authors may add documentation to their pipeline documents with the
p:documentation element. Except when it appears as a descendant of p:inline, the
p:documentation element is completely ignored by pipeline processors, it exists
simply for documentation purposes. If a p:documentation is provided as a
descendant of p:inline, it has no special semantics, it is treated literally as part of
the document to be provided on that port. The p:documentation element has no
special semantics when it appears in documents that flow through the pipeline.

Pipeline processors that inspect the contents of p:documentation elements and
behave differently on the basis of what they find are not conformant. Processor
extensions must be specified with p:pipeinfo.

83

14. Syntax Overview

14.7. Processor annotations
Pipeline authors may add annotations to their pipeline documents with the
p:pipeinfo element. The semantics of p:pipeinfo elements are implementation-
defined. Processors should specify a way for their annotations to be identified,
perhaps with extension attributes.

Where p:documentation is intended for human consumption, p:pipeinfo elements
are intended for processor consumption. A processor might, for example, use
annotations to identify some particular aspect of an implementation, to request
additional, perhaps non-standard features, to describe parallelism constraints, etc.

When a p:pipeinfo appears as a descendant of p:inline, it has no special
semantics; in that context it must be treated literally as part of the document to be
provided on that port. The p:pipeinfo element has no special semantics when it
appears in documents that flow through the pipeline.

14.8. Extension attributes
[Definition: An element from the XProc namespace may have any attribute not from
the XProc namespace, provided that the expanded-QName of the attribute has a non-
null namespace URI. Such an attribute is called an extension attribute.]

The presence of an extension attribute must not cause the connections between steps
to differ from the connections that would arise in the absence of the attribute. They
must not cause the processor to fail to signal an error that would be signaled in the
absence of the attribute.

A processor which encounters an extension attribute that it does not implement must
behave as if the attribute was not present.

14.9. Common Attributes
Several attributes can be used on any XProc step, or even any element in a pipeline.
For convenience, they are all summarized here.

Attributes from the XML namespace are allowed anywhere. In particular:

84

14. Syntax Overview

• An xml:id attribute is allowed on any element. It has the semantics of [xml:id].

• An xml:base attribute is allowed on any element. It has the semantics of [XML
Base].

• An xml:lang attribute is allowed on any element. It has the semantics of [XML
1.0].

• An xml:space attribute is allowed on any element. It has the semantics of [XML
1.0].

The remaining attributes are sometimes in no namespace and sometimes explicitly in
the XProc namespace. They are in no namespace when they appear on an XProc
element; they are in the XProc namespace when they are on an element in any other
namespace. In this way, they do not conflict with the names used in other
vocabularies. It is a static error (err:XS0097) if an attribute in the XProc namespace
appears on an element in the XProc namespace.

14.9.1. Expand text attributes

The [p:]expand-text and [p:]inline-expand-text attributes control whether or
not text and attribute nodes in descendant p:inline elements and implicit inlines
are designated as value templates. Note that they control both text and attribute value
templates.

The [p:]expand-text attribute can appear on all elements in the pipeline. It controls
whether or not descendant inlines are designated as value templates. If the attribute
itself appears among the descendants of a p:inline (or implicit inline), then it is a
regular attribute and has no special semantics. In this case, the
[p:]inline-expand-text attribute comes into play.

The [p:]inline-expand-text attribute appearing as descendant of a p:inline or
in an implicit inline is treated as a special attribute, with the same semantics as the
[p:]expand-text attribute. The attribute will not be part of the result of the
p:inline or implicit inline.

85

14. Syntax Overview

If the [p:]expand-text or [p:]inline-expand-text attribute appears on more
than one element among the ancestors of a text or attribute node in a p:inline
element or implicit inline, only the value on the nearest ancestor is considered.

If the nearest [p:]expand-text or [p:]inline-expand-text attribute has the value
“false”, then the text and attribute nodes in a p:inline element or implicit inline
are not value templates. If it has the value “true”, or if no such attribute is present
among ancestors, then the text and attribute nodes are value templates.

Neither [p:]expand-text nor [p:]inline-expand-text are attribute value
templates themselves. It is a static error (err:XS0113) if either [p:]expand-text or
[p:]inline-expand-text is to be interpreted by the processor and it does not have
the value “true” or “false”.

14.9.2. Conditional Element Exclusion

The [p:]use-when attribute controls whether or not an element (and its
descendants) appear in the pipeline. The value of the attribute must contain an XPath
expression that can be evaluated statically (See Section 11.3, “Static Options”.)
[Definition: If the effective boolean value of the [p:]use-when expression is false,
then the element and all of its descendants are effectively excluded from the pipeline
document.] If a node is effectively excluded, the processor must behave as if the
element was not present in the document.

Conditional element exclusion occurs during static analysis of the pipeline.

Note
The effective exclusion of [p:]use-when processing occurs after
XML parsing and has no effect on well-formedness or validation
errors which will be reported in the usual way.

Deadlock situations can arise if two or more [p:]use-when expressions depend on
each other. Consider, for example:

86

14. Syntax Overview

<p:declare-step type="ex:A" use-when="p:step-available('ex:B')">
 …
</p:declare-step>

<p:declare-step type="ex:B" use-when="p:step-available('ex:A')">
 …
</p:declare-step>

It is not possible for the processor to determine if ex:A should be declared without
first determining if ex:B should be declared, and vice versa.

It is a static error (err:XS0115) if two or more elements are contained within a
deadlocked network of [p:]use-when expressions. In order to avoid deadlock, there
must exist an order in which every expression can be resolved without reference to
an expression that occurs after it in the ordering.

Processors may be required to evaluate expressions in an arbitrary order, but they are
not required to solve a set of linear equations simultaneously. So, while “declare both
ex:A and ex:B” is a valid solution to the example above, conformant processors are
not required (or allowed) to find it because neither the order “A then B” nor the order
“B then A” is sufficient to find the solution.

14.9.3. Additional dependent connections

The [p:]depends attribute can appear on any step invocation except p:when,
p:otherwise, p:catch, and p:finally. It adds an explicit dependency between
steps. The value of the attribute is a space separated list of step names. It is a static
error (err:XS0073) if any specified name is not the name of an in-scope step.

In most pipelines, the dependencies that arise naturally from the connections
between steps are sufficient. If step “B” consumes the output of step “A”, then clearly
“A” must run before “B”. However, it is sometimes the case that one step depends on
another in ways that are not apparent in the connections. Consider, for example, a
pipeline that interacts with two different web services. It may very well be the case
that one web service has to run before the other, even though the latter does not
consume any output from the former.

87

14. Syntax Overview

When [p:]depends is used, if step “Y” depends on step “X”, then “X” must run
before “Y”.

The connections specified by the [p:]depends attribute apply in addition to the
dependencies that arise naturally from connections between steps. Taken together
with the input and output connections, the graph must not contain any loops.

The [p:]depends attribute is forbidden from several elements because they are only
conditionally evaluated. The semantics of dependency are ambiguous at best in this
case. Moving the dependency to the parent element resolves this ambiguity.

14.9.4. Controlling long running steps

The [p:]timeout attribute allows a pipeline author to suggest a length of time
beyond which the pipeline processor should consider that a step has taken an
excessive amount of time.

The value of the [p:]timeout option must be a xs:nonNegativeInteger. It is
interpreted as a number of seconds. The value zero may be used to indicate that no
limit is expressed (this is the same as omitting the attribute, but may sometimes be
more convenient for pipeline authors).

It is a dynamic error (err:XD0053) if a step runs longer than its timeout value.

The precise amount of time a step takes to perform its task depends on many factors
(the hardware running the processor, the processor’s execution strategy, the system
load etc.) This feature can not be used as an exact timing tool in XProc. Developers
are advised to calculate the value for [p:]timeout generously, so the dynamic error
is raised only in extreme cases.

It is implementation-defined whether a processor supports timeouts, and if it does, how
precisely and precisely how the execution time of a step is measured.

14.9.5. Status and debugging output

The [p:]message attribute can appear on any step invocation. It’s value is treated as
an attribute value template (irrespective of any enclosing [p:]expand-text setting)
and the computed value is made available.

88

14. Syntax Overview

Precisely what “made available” means is implementation-defined. It will often be as
simple as printing the message on some output channel. But for embedded systems
or other environments where “print it for the user” is meaningless or inconvenient,
some other mechanism may be used.

If a processor can make the message available, it should do so before execution of the
step begins.

14.10. Syntax Summaries
The description of each element in the pipeline namespace is accompanied by a
syntactic summary that provides a quick overview of the element’s syntax:

<p:some-element
 reqd-attribute = some-type
 some-attribute? = some-type
 avt-attribute? = { some-type }>
 (some |
 elements |
 allowed)*,
 other-elements?
</p:some-element>

The content model fragments in these tableaux are presented in a simple, compact
notation. In brief:

Attributes

• Required attributes are bold. Optional attributes are followed by a question
mark.

• If an attribute value may contain an attribute value template, its type is
shown in curly brackets: “{ some-type }”. If some-type is xs:anyURI,
xs:QName, or a map type with key type of xs:QName, the conversions
described in Section 11.5, “Implicit casting” apply.

• An attribute value with a map type marks an XPathExpression expected to
deliver a map of the indicated type. If the map type has a key type of
xs:QName, the conversions described in Section 11.5, “Implicit casting”
apply.

89

14. Syntax Overview

Elements

• A name represent exactly one occurrence of an element with that name.

• Parentheses are used for grouping.

• Elements or groups separated by a comma (“,”) represent an ordered
sequence: a followed by b followed by c: (a,b,c).

• Elements or groups separated by a vertical bar (“|”) represent a choice: a or
b or c: (a | b | c).

• Elements or groups separated by an ampersand (“&”) represent an
unordered sequence: a and b and c, in any order: (a & b & c).

• An element or group followed by a question mark (“?”) is optional; it may
or may not occur but if it occurs it can occur only once.

• An element or group followed by an asterisk (“*”) is optional and may be
repeated; it may or may not occur and if it occurs it can occur any number
of times.

• An element or group followed by a plus (“+”) is required and may be
repeated; it must occur at least once, and it can occur any number of times.

For clarity of exposition, the common attributes (see Section 14.9, “Common
Attributes”) are elided from the summaries as are the p:documentation and
p:pipeinfo elements, which are allowed anywhere, and attributes that are syntactic
shortcuts for option values.

The types given for attributes should be understood as follows:

• ID, NCName, NMTOKEN, NMTOKENS, anyURI, boolean, integer, string: As per
[W3C XML Schema: Part 2] including whitespace normalization as appropriate.

• EQName: With whitespace normalization as per [W3C XML Schema: Part 2] for
QNames. Note, however, that QNames that have no prefix are always in no-
namespace, irrespective of the default namespace.

• EQNameList: As a whitespace separated list of EQNames, per the definition
above.

90

14. Syntax Overview

• PrefixList: As a list with [item type] NMTOKEN, per [W3C XML Schema: Part
2], including whitespace normalization.

• ExcludeInlinePrefixes: As a PrefixList per the definition above, with the
following extensions: the tokens #all and #default may appear.

• XPathExpression, XSLTSelectionPattern: As a string per [W3C XML Schema:
Part 2], including whitespace normalization, and the further requirement to be a
conformant Expression per [XPath 3.1] or selection pattern per [XSLT 3.0].

• MediaTypes: As a whitespace separated list of media types as defined in [RFC
2046].

14.11. Common errors
A number of errors apply generally:

• It is a static error (err:XS0059) if the pipeline element is not p:declare-step or
p:library.

• It is a static error (err:XS0008) if any element in the XProc namespace has
attributes not defined by this specification unless they are extension attributes.

• It is a static error (err:XS0038) if any required attribute is not provided.

• It is a static error (err:XS0077) if the value on an attribute of an XProc element
does not satisfy the type required for that attribute.

• It is a dynamic error (err:XD0028) if any attribute value does not satisfy the type
required for that attribute.

• It is a static error (err:XS0044) if any step contains an atomic step for which
there is no visible declaration.

• It is a static error (err:XS0037) if any user extension step or any element in the
XProc namespace other than p:inline directly contains text nodes that do not
consist entirely of whitespace.

• It is a static error (err:XS0015) if a compound step has no contained steps.

91

14. Syntax Overview

• It is a dynamic error (err:XD0012) if any attempt is made to dereference a URI
where the scheme of the URI reference is not supported. Implementations are
encouraged to support as many schemes as is practical and, in particular, they
should support both the file: and http(s): schemes. The set of URI schemes
actually supported is implementation-defined.

• It is a dynamic error (err:XD0030) if a step is unable or incapable of performing
its function. This is a general error code for “step failed” (e.g., if the input isn't of
the expected type or if attempting to process the input causes the
implementation to abort). Users and implementers who create extension steps
are encouraged to use this code for general failures.

• In most steps which use a select expression or selection pattern, any kind of node
can be identified by the expression or pattern. However, some expressions and
patterns on some steps are only applicable to some kinds of nodes (e.g., it
doesn't make sense to speak of adding attributes to a comment!).

It is a dynamic error (err:XC0023) if a select expression or selection pattern returns
a node type that is not allowed by the step.

• It is a static error (err:XS0100) if the pipeline document does not conform to the
grammar for pipeline documents. This is a general error code indicating that the
pipeline is syntactically incorrect in some way not identified more precisely in
this specification.

If an XProc processor can determine statically that a dynamic error will always occur,
it may report that error statically provided that the error does not occur among the
descendants of a p:try. Dynamic errors inside a p:try must not be reported
statically. They must be raised dynamically so that p:catch processing can be
performed on them.

15. Steps
This section describes the core language steps of XProc; the full vocabulary of
standard, atomic steps is described in [Steps 3.0].

92

15. Steps

15.1. Pipelines
The document element of a pipeline document is p:declare-step which declares a
pipeline that can be evaluated by an XProc processor.

It encapsulates the behavior of a subpipeline. Its children declare inputs, outputs, and
options that the pipeline exposes and identify the steps in its subpipeline.

Viewed from the outside, a p:declare-step is a black box which performs some
calculation on its inputs and produces its outputs. From the pipeline author’s
perspective, the computation performed by the pipeline is described in terms of
contained steps which read the pipeline’s inputs and produce the pipeline’s outputs.

A p:declare-step element can also be nested inside other p:declare-step or
p:library elements in which case it simply declares a pipeline that will be run
elsewhere.

For more details, see Section 16.5, “p:declare-step”.

15.1.1. Example

A pipeline might accept a document as input; perform XInclude, validation, and
transformation; and produce the transformed document as its output.

93

15. Steps

Example 4. A Sample Pipeline Document

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 version="3.0">
<p:input port="source"/>
<p:output port="result"/>

<p:xinclude/>

<p:validate-with-xml-schema>
 <p:with-input port="schema">
 <p:document href="http://example.com/path/to/schema.xsd"/>
 </p:with-input>
</p:validate-with-xml-schema>

<p:xslt>
 <p:with-input port="stylesheet">
 <p:document href="http://example.com/path/to/stylesheet.xsl"/>
 </p:with-input>
</p:xslt>

</p:declare-step>

15.2. p:for-each
A for-each is specified by the p:for-each element. It is a compound step that
processes a sequence of documents, applying its subpipeline to each document in turn.

<p:for-each
 name? = NCName>
 ((p:with-input? &
 p:output*),
 subpipeline)
</p:for-each>

When a pipeline needs to process a sequence of documents using a subpipeline that
only processes a single document, the p:for-each construct can be used as a
wrapper around that subpipeline. The p:for-each will apply that subpipeline to
each document in the sequence in turn.

94

15. Steps

The result of the p:for-each is a sequence of documents produced by processing
each individual document in the input sequence. If the p:for-each has one or more
output ports, what appears on each of those ports is the sequence of documents that
is the concatenation of the sequence produced by each iteration of the loop on the
port to which it is connected. If the iteration source for a p:for-each is an empty
sequence, then the subpipeline is never run and an empty sequence is produced on
all of the outputs.

The p:for-each has a single anonymous input: its connection is provided by the
p:with-input. If no iteration sequence is explicitly provided, then the iteration
source is read from the default readable port.

The processor provides each document, one at a time, to the subpipeline represented
by the children of the p:for-each on a port named current.

For each declared output, the processor collects all the documents that are produced
for that output from all the iterations, in order, into a sequence. The result of the
p:for-each on that output is that sequence of documents.

The environment inherited by the contained steps of a p:for-each is the inherited
environment with these modifications:

• The port named “current” on the p:for-each is added to the readable ports.

• The port named “current” on the p:for-each is made the default readable port.

If the p:for-each has a primary output port (explicit or supplied by default) and that
port has no connection, then it is connected to the primary output port of the last step in
the subpipeline. It is a static error (err:XS0006) if the primary output port has no
explicit connection and the last step in the subpipeline does not have a primary
output port.

Note that outputs declared for a p:for-each serve a dual role. Inside the
p:for-each, they are used to read results from the subpipeline. Outside the
p:for-each, they provide the aggregated results.

The sequence attribute on a p:output inside a p:for-each only applies inside the
step. From the outside, all of the outputs produce sequences.

95

15. Steps

15.2.1. XPath Context

Within a p:for-each, the p:iteration-position and p:iteration-size are taken
from the sequence of documents that will be processed by the p:for-each. The total
number of documents is the p:iteration-size; the ordinal value of the current
document (the document appearing on the current port) is the
p:iteration-position.

Note to implementers
In the case where no XPath expression that must be evaluated by the
processor makes any reference to p:iteration-size, its value does
not actually have to be calculated (and the entire input sequence does
not, therefore, need to be buffered so that its size can be calculated
before processing begins).

15.2.2. Example

A p:for-each might accept a sequence of chapters as its input, process each chapter
in turn with XSLT, a step that accepts only a single input document, and produce a
sequence of formatted chapters as its output.

96

15. Steps

Example 5. A Sample For-Each

<p:for-each name="chapters">
 <p:with-input select="//chapter"/>
 <p:output port="html-results">
 <p:pipe step="make-html" port="result"/>
 </p:output>
 <p:output port="fo-results">
 <p:pipe step="make-fo" port="result"/>
 </p:output>

 <p:xslt name="make-html">
 <p:with-input port="stylesheet"
 href="http://example.com/xsl/html.xsl"/>
 </p:xslt>

 <p:xslt name="make-fo">
 <p:with-input port="source" pipe="current@chapters"/>
 <p:with-input port="stylesheet"
 href="http://example.com/xsl/fo.xsl"/>
 </p:xslt>
</p:for-each>

The //chapter elements of the document are selected. Each chapter is transformed
into HTML and XSL Formatting Objects using an XSLT step. The resulting HTML
and FO documents are aggregated together and appear on the html-results and
fo-results ports, respectively, of the chapters step itself.

15.3. p:viewport
A viewport is specified by the p:viewport element. It is a compound step that
processes single XML or HTML documents, applying its subpipeline to one or more
subtrees of each document in turn.

97

15. Steps

<p:viewport
 name? = NCName
 match = XSLTSelectionPattern>
 ((p:with-input? &
 p:output?),
 subpipeline)
</p:viewport>

The result of the p:viewport is a copy of the original document where the selected
subtrees have been replaced by the results of applying the subpipeline to them.

The p:viewport has a single anonymous input: its connection is provided by the
p:with-input. If no document is explicitly provided, then the viewport source is
read from the default readable port. If the p:viewport input is a sequence, each
document in the sequence is processed in turn producing a sequence on the output. It
is a dynamic error (err:XD0072) if a document appearing on the input port of
p:viewport is neither an XML document nor an HTML document.

The match attribute specifies an XSLT selection pattern. Each matching node in the
source document is wrapped in a document node, as necessary, and provided, one at
a time, to the viewport’s subpipeline on a port named current. The base URI of the
resulting document that is passed to the subpipeline is the base URI of the matched
node. It is a dynamic error (err:XD0010) if the match expression on p:viewport
matches an attribute or a namespace node.

Note
The match attribute on p:viewport is a selection pattern and may
contain references to in-scope variables and options, but it is not an
attribute value template.

After a match is found, the entire subtree rooted at that match is processed as a unit.
No further attempts are made to match nodes among the descendants of any
matched node.

The environment inherited by the contained steps of a p:viewport is the inherited
environment with these modifications:

98

15. Steps

• The port named “current” on the p:viewport is added to the readable ports.

• The port named “current” on the p:viewport is made the default readable port.

The p:viewport must contain a single, primary output port declared explicitly or
supplied by default. If that port has no connection, then it is connected to the primary
output port of the last step in the subpipeline. It is a static error (err:XS0006) if the
primary output port is unconnected and the last step in the subpipeline does not have
a primary output port.

What appears on the output from the p:viewport will be a copy of the input
document where each matching node is replaced by the result of applying the
subpipeline to the subtree rooted at that node. In other words, if the selection pattern
matches a particular node then that node is wrapped in a document node and
provided on the current port, the subpipeline in the p:viewport is evaluated, and
the result that appears on the output port replaces the matched node.

If a document resulting from applying the subpipeline to the matched node is an
XML document, an HTML document, or a text document, all child nodes of the
document node will be used to replace the matched node. It is a dynamic
error (err:XD0073) if the document returned by applying the subpipeline to the
matched node is not an XML document, an HTML document, or a text document.

If no documents appear on the output port, the matched node will effectively be
deleted. If exactly one document appears, the contents of that document will replace
the matched node. If a sequence of documents appears, then the contents of each
document in that sequence (in the order it appears in the sequence) will replace the
matched node.

The output of the p:viewport itself is a sequence of documents that appear on a port
named “result”. Note that the semantics of p:viewport are special. The output
port in the p:viewport is used only to access the results of the subpipeline. The
output of the step itself appears on a port with the fixed name “result” that is never
explicitly declared.

For the documents appearing on port result all document properties will be
preserved, except when option match matches a document node and the result from
applying the subpipeline to the document node is a (sequence of) text document(s).

99

15. Steps

In this case the content-type property is changed to “text/plain” and the
serialization property is removed, while all other document properties are preserved.

15.3.1. XPath Context

Within a p:viewport, the p:iteration-position and p:iteration-size are taken
from the sequence of documents that will be processed by the p:viewport. The total
number of documents is the p:iteration-size; the ordinal value of the current
document (the document appearing on the current port) is the
p:iteration-position.

Note to implementers
In the case where no XPath expression that must be evaluated by the
processor makes any reference to p:iteration-size, its value does
not actually have to be calculated (and the entire input sequence does
not, therefore, need to be buffered so that its size can be calculated
before processing begins).

15.3.2. Example

A p:viewport might accept an XHTML document as its input, add an hr element at
the beginning of all div elements that have the class value “chapter”, and return an
XHTML document that is the same as the original except for that change.

100

15. Steps

Example 6. A Sample Viewport

<p:viewport match="h:div[@class='chapter']"
 xmlns:h="http://www.w3.org/1999/xhtml">
 <p:insert position="first-child">
 <p:with-input port="insertion">
 <hr xmlns="http://www.w3.org/1999/xhtml"/>
 </p:with-input>
 </p:insert>
</p:viewport>

The nodes which match h:div[@class='chapter'] in the input document are
selected. An hr is inserted as the first child of each h:div and the resulting version
replaces the original h:div. The result of the whole step is a copy of the input
document with a horizontal rule as the first child of each selected h:div.

15.4. p:choose
A choose step is specified by the p:choose element. It is a compound step that contains
several, alternate subpipelines. One subpipeline is selected based on the evaluation
of XPath expressions.

<p:choose
 name? = NCName>
 (p:with-input?,
 ((p:when+,
 p:otherwise?) |
 (p:when*,
 p:otherwise)))
</p:choose>

A p:choose contains an arbitrary number of alternative subpipelines, at most one of
which will be evaluated. It is a static error (err:XS0074) if a p:choose has neither a
p:when nor a p:otherwise.

The list of alternative subpipelines consists of zero or more subpipelines guarded by
an XPath expression, followed optionally by a single default subpipeline.

101

15. Steps

The p:choose considers each subpipeline in turn and selects the first (and only the
first) subpipeline for which the guard expression evaluates to true in its context.
After a subpipeline is selected, no further guard expressions are evaluated. If there
are no subpipelines for which the expression evaluates to true then, if a default
subpipeline was specified, it is selected, otherwise, no subpipeline is selected.

After a subpipeline is selected, it is evaluated as if only it had been present.

The outputs of the p:choose are taken from the outputs of the selected subpipeline.
The outputs available from the p:choose are union of all of the outputs declared in
any of its alternative subpipelines. In order to maintain consistency with respect to
the default readable port, if any subpipeline has a primary output port, even implicitly,
then every subpipline must have a primary output port with the same name. In some
cases, this may require making the implicit primary output explicit in order to assure
that it has the same name. It is a static error (err:XS0102) if alternative subpipelines
have different primary output ports.

Consider a p:choose that has two alternative subpipelines where one declares
output ports “A” and “B” and the other declares output ports “B” and “C”. The
outputs available from the p:choose are “A”, “B”, and “C”. No documents appear
on any outputs not declared in the subpipline actually selected.

As a convenience to authors, it is not an error if some subpipelines declare outputs
that can produce sequences and some do not. Each output of the p:choose is
declared to produce a sequence. The content types that can appear on the port are the
union of the content types that might be produced by any of the p:when or the
p:otherwise. If a primary output port is (explicitly or implicitly) defined and
p:otherwise is missing, documents with any content type can appear on that port.

The p:choose can specify the context item against which the XPath expressions that
occur on each branch are evaluated. The context item is specified as a connection in
the p:with-input. If no explicit connection is provided, the default readable port is
used. If the context item is connected to p:empty, or is connected to more than one
document, or is unconnected and the default readable port is undefined, the context
item is undefined. It is a dynamic error (err:XD0001) if an XPath expression makes
reference to the context item, size, or position when the context item is undefined.

102

15. Steps

Each conditional subpipeline is represented by a p:when element. The default branch
is represented by a p:otherwise element. These elements are not sibling steps in the
usual sense, the names of sibling p:when elements and the p:otherwise element are
not in the same scope.

If the following conditions apply:

• The p:choose does not contain a p:otherwise child element

• The p:when branches all define a primary output port (either implicitly or
explicitly)

• None of the effective boolean values of the p:when test expressions evaluates to
true

Then the p:choose copies any documents that appear on its default readable port to
its primary output port. No documents will be written to the primary output port if
there isn’t a default readable port, but that is not an error in this case. No documents
will ever be written to any non-primary output ports in this case.

Informally: the default sub-pipeline for a missing p:otherwise is a p:identity step
(with the additional feature that it isn’t an error if there’s no default readable port). If
the p:when branches do not have a primary output port, no output will be produced
on any port.

15.4.1. p:when

A when specifies one subpipeline guarded by a test expression.

<p:when
 name? = NCName
 test = XPathExpression
 collection? = boolean>
 (p:with-input?,
 p:output*,
 subpipeline)
</p:when>

103

15. Steps

Each p:when branch of the p:choose has a test attribute which must contain an
XPath expression. That XPath expression’s effective boolean value is the guard for
the subpipeline contained within that p:when.

The p:when can specify a context item against which its test expression is to be
evaluated. That context item is specified as a connection for the p:with-input. If no
context is specified on the p:when, the context of the p:choose is used. The context
item is undefined if the connection or the context of the p:choose provides no or
more than one document. It is a dynamic error (err:XD0001) if an XPath expression
makes reference to the context item, size, or position when the context item is
undefined.

If the collection attribute has the value true, then the default collection will contain
all of the documents that appeared on that input and the context item will be
undefined.

15.4.2. p:otherwise

An otherwise specifies the default branch; the subpipeline selected if no test
expression on any preceding p:when evaluates to true.

<p:otherwise
 name? = NCName>
 (p:output*,
 subpipeline)
</p:otherwise>

15.4.3. Example

A p:choose might test the version attribute of the document element and validate
with an appropriate schema.

104

15. Steps

Example 7. A Sample Choose

<p:choose name="version">
 <p:when test="/*[@version = 2]">
 <p:validate-with-xml-schema>
 <p:with-input port="schema" href="v2schema.xsd"/>
 </p:validate-with-xml-schema>
 </p:when>

 <p:when test="/*[@version = 1]">
 <p:validate-with-xml-schema>
 <p:with-input port="schema" href="v1schema.xsd"/>
 </p:validate-with-xml-schema>
 </p:when>

 <p:when test="/*[@version]">
 <p:identity/>
 </p:when>

 <p:otherwise>
 <p:error code="NOVERSION">
 <p:with-input port="source">

<p:inline>
 <message>Required version attribute missing.</message>
</p:inline>

 </p:with-input>
 </p:error>
 </p:otherwise>
</p:choose>

15.5. p:if
A p:if specifies a single subpipeline guarded by a test expression.

<p:if
 name? = NCName
 test = XPathExpression
 collection? = boolean>
 (p:with-input?,
 p:output*,
 subpipeline)
</p:if>

105

15. Steps

The p:if step has a test attribute which must contain an XPath expression. That
XPath expression’s effective boolean value is the guard for the subpipeline contained
within it.

The p:if step can specify a context item against which its test expression is to be
evaluated. That context node is specified as a connection for the p:with-input. If no
context is specified on the p:if, the context comes from the default readable port. If no
context is specified and there is no default readable port, the context item is
undefined. The context item is also undefined, if no or more than one document is
provided. It is a dynamic error (err:XD0001) if an XPath expression makes reference
to the context item, size, or position when the context item is undefined.

If the collection attribute has the value true, then the default collection will contain
all of the documents that appeared on that input and the context item will be
undefined.

The p:if must specify a primary output port (either implicitly or explicitly). It is a
static error (err:XS0108) if the p:if step does not specify a primary output port.

The requirement for a primary output port stems from the semantics of p:if:

• If the effective boolean value of the test expression is true, then the subpipline
will be run. The output of the p:if in this case is determined by the output ports
of the step and what the subpipeline sends to them.

• If the effective boolean value of the test expression is false, then p:if copies any
documents that appear on its default readable port to its primary output port.
No documents will be written to the primary output port if there isn’t a default
readable port, but that is not an error in this case. No documents will ever be
written to any non-primary output ports if the test expression is false.

Informally, if the test expression is false, then p:if acts like the identity step (with the
additional feature that it isn’t an error if there’s no default readable port). A primary
output port is required in order to make these semantics meaningful and consistent.

The sequence attribute and the content-types attribute of the primary output port
only apply to the subpipeline of p:if. From the outside a primary output port of a
p:if produces sequences and allows documents of any content type. For all other

106

15. Steps

output ports the sequence attribute only applies to the subpipeline, while on the
outside these ports may produce sequences.

15.6. p:group
A group is specified by the p:group element. It is a compound step that encapsulates
the behavior of its subpipeline.

<p:group
 name? = NCName>
 (p:output*,
 subpipeline)
</p:group>

A p:group is a convenience wrapper for a collection of steps.

107

15. Steps

15.6.1. Example

Example 8. An Example Group

<p:group>
 <p:variable name="db-key"

 select="'some-long-string-of-nearly-random-characters'"/>

 <p:choose>
 <p:when test="/config/output = 'fo'">
 <p:xslt>

<p:with-option name="parameters" select="map {'key': $db-key }"/>
<p:with-input port="stylesheet" href="fo.xsl"/>

 </p:xslt>
 </p:when>
 <p:when test="/config/output = 'svg'">
 <p:xslt>

<p:with-option name="parameters" select="map {'key': $db-key }"/>
<p:with-input port="stylesheet" href="svg.xsl"/>

 </p:xslt>
 </p:when>
 <p:otherwise>
 <p:xslt>

<p:with-option name="parameters" select="map {'key': $db-key }"/>
<p:with-input port="stylesheet" href="html.xsl"/>

 </p:xslt>
 </p:otherwise>
 </p:choose>
</p:group>

15.7. p:try
A try/catch step is specified by the p:try element. It is a compound step that isolates
its initial subpipeline, preventing dynamic errors that arise within it from being
exposed to the rest of the pipeline. The p:try includes alternate recovery
subpipelines, and may include a “finally” subpipeline to perform post-processing
irrespective of the outcome of the p:try.

108

15. Steps

<p:try
 name? = NCName>
 (p:output*,
 subpipeline,
 ((p:catch+,
 p:finally?) |
 (p:catch*,
 p:finally)))
</p:try>

The step begins with the initial subpipeline; the recovery (or “catch”) pipelines are
identified with p:catch elements; a “finally” pipeline is identified with a p:finally
element.

It is a static error (err:XS0075) if a p:try does not have at least one subpipeline step,
at least one of p:catch or p:finally, and at most one p:finally.

The p:try step evaluates the initial subpipeline and, if no errors occur, the outputs of
that pipeline are the outputs of the p:try step. However, if any errors occur, the
p:try abandons the first subpipeline, discarding any output that it might have
generated, and considers the recovery subpipelines. If there is no matching recovery
subpipeline, the p:try fails.

Note
If the initial subpipeline fails, none of its outputs will be visible
outside of the p:try, but it’s still possible for steps in the partially
evaluated pipeline to have side effects that are visible outside the
processor. For example, a web server might record that some
interaction was performed, or a file on the local file system might
have been modified.

If a recovery subpipeline is evaluated, the outputs of the recovery subpipeline are the
outputs of the p:try step. If the recovery subpipeline is evaluated and a step within
that subpipeline fails, the p:try fails.

109

15. Steps

Irrespective of whether the initial subpipeline succeeds or fails, if any recovery
pipeline is selected, and whether it succeeds or fails, the p:finally block is always
run after all other processing of the p:try has finished.

The outputs of the p:try are taken from the outputs of the initial subpipeline or the
recovery subpipline if an error occurred in the initial subpipeline. The outputs
available from the p:try are union of all of the outputs declared (explicitly or
implicitly in the absence of any p:output elements if the last step has a primary
output port) in any of its alternative subpipelines. In order to maintain consistency
with respect to the default readable port, if any subpipeline has a primary output port,
even implicitly, then every subpipline must have a primary output port with the same
name. In some cases, this may require making the implicit primary output explicit in
order to assure that it has the same name. It is a static error (err:XS0102) if
alternative subpipelines have different primary output ports.

Consider a p:try that has an initial subpipeline that declares output ports “A” and
“B” and a recovery subpipeline that declares output ports “B” and “C”. The outputs
available from the p:try are “A”, “B”, and “C”. No documents appear on any
outputs not declared in the subpipeline whose results are actually returned.

As a convenience to authors, it is not an error if an output port can produce a
sequence in the initial subpipeline but not in the recovery subpipeline, or vice versa.
Each output of the p:try is declared to produce a sequence. The content types that
can appear on the port are the union of the content types that might be produced by
the initial subpipeline and any of the recovery subpipelines.

A pipeline author can cause an error to occur with the p:error step.

If we assume that an absent p:finally always succeeds, evaluation of a p:try falls
into one of these cases:

• If the initial pipeline succeeds:

◦ If the p:finally succeeds, the p:try succeeds and the outputs of the initial
subpipeline are the outputs of the p:try.

◦ If the p:finally fails, the p:try fails and the error raised by the p:finally
is reported as the cause of the failure.

110

15. Steps

• If the initial pipeline fails and a recovery subpipeline is selected:

◦ If the recovery pipeline succeeds:

▪ If the p:finally succeeds, the p:try succeeds and the outputs of the
recovery subpipeline are the outputs of the p:try.

▪ If the p:finally fails, the p:try fails and the error raised by the
p:finally is reported as the cause of the failure.

◦ If the recovery pipeline fails:

▪ If the p:finally succeeds, the p:try fails and the error raised by the
recovery subpipeline is reported as the cause of the failure.

▪ If the p:finally fails, the p:try fails and the error raised by the
recovery subpipeline must be reported as the cause of the failure. The
error raised by the finally pipeline may also be reported in addition to
the error raised by the recovery pipeline.

• If the initial pipeline fails and a recovery subpipeline is not selected:

◦ If the p:finally succeeds, the p:try fails and the error raised by the initial
subpipeline is reported as the cause of the failure.

◦ If the p:finally fails, the p:try fails and the error raised by the initial
subpipeline must be reported as the cause of the failure. The error raised by
the finally pipeline may also be reported in addition to the error raised by
the initial subpipeline.

The p:catch and p:finally elements are not sibling steps, the names of sibling
p:catch elements and the p:finally element are not in the same scope. The
elements of the initial subpipeline are also not in the same scope as the p:catch and
p:finally elements or their descendants.

15.7.1. p:catch

A p:catch is a recovery subpipeline.

111

15. Steps

<p:catch
 name? = NCName
 code? = EQNameList>
 (p:output*,
 subpipeline)
</p:catch>

The environment inherited by the contained steps of the p:catch is the inherited
environment with these modifications:

• A primary input port named “error” is added to the readable ports on the
p:catch.

• Output ports and variables from the p:try’s subpipeline are not available.

All except the last p:catch pipeline must have a code attribute. It is a static
error (err:XS0064) if the code attribute is missing from any but the last p:catch or if
any error code occurs in more than one code attribute among sibling p:catch
elements. It is a static error (err:XS0083) if the value of the code attribute is not a
whitespace separated list of EQNames.

When a p:try considers the recovery subpipelines, if any of the specified error codes
in a p:catch match the error that was raised in the initial subpipeline, then that
p:catch is selected as the recovery pipeline. If the last p:catch does not have a code
attribute, it is selected if no other p:catch has a matching error code.

What appears on the error input port is an error document. The error document
may contain messages generated by steps that were part of the initial subpipeline.
Not all messages that appear are indicative of errors; for example, it is common for
all xsl:message output from the XSLT component to appear on the error input
port. It is possible that the component which fails may not produce any messages at
all. It is also possible that the failure of one component may cause others to fail so
that there may be multiple failure messages in the document.

15.7.2. p:finally

The last thing that the p:try step does is evaluate the p:finally pipeline.

112

15. Steps

<p:finally
 name? = NCName>
 (p:output*,
 subpipeline)
</p:finally>

The environment inherited by the contained steps of the p:finally is the inherited
environment with these modifications:

• A primary input port named “error” is added to the readable ports on the
p:finally.

• Output ports and variables from the p:try’s subpipeline are not available.

If no error occurred, there will be no documents on the error port.

The p:finally exists only to handle recovery and resource cleanup tasks. Because
the p:finally will always be evaluated, it must not have output ports that might
conflict with the output ports of either the initial subpipline or any p:catch. It is a
static error (err:XS0072) if the name of any output port on the p:finally is the same
as the name of any other output port in the p:try or any of its sibling p:catch
elements. It is a static error (err:XS0112) if p:finally declares a primary output port
either explicitly or implicitly.

15.7.3. The Error Vocabulary

In general, it is very difficult to predict error behavior. Step failure may be
catastrophic (programmer error), or it may be the result of user error, resource
failures, etc. Steps may detect more than one error, and the failure of one step may
cause other steps to fail as well.

The p:try/p:catch mechanism gives pipeline authors the opportunity to process
the errors that caused the p:try to fail. In order to facilitate some modicum of
interoperability among processors, errors that are reported on the error input port of
a p:catch should conform to the format described here.

113

15. Steps

15.7.3.1. c:errors

The error vocabulary consists of a root element, c:errors which contains zero or
more c:error elements.

<c:errors>
 c:error*
</c:errors>

15.7.3.2. c:error

Each specific error is represented by an c:error element:

<c:error
 name? = NCName
 type? = EQName
 code? = EQName
 cause? = EQName
 href? = anyURI
 line? = integer
 column? = integer
 offset? = integer>
 anyNode*
</c:error>

The name and type attributes identify the name and type, respectively, of the step
which failed.

The code is an EQName which identifies the error. For steps which have defined
error codes, this is an opportunity for the step to identify the error in a machine-
processable fashion. Many steps omit this because they do not include the concept of
errors identified by EQNames.

The cause is an EQName which identifies an underlying error, if applicable. As an
aide to interoperability, this specification mandates particular error codes for
conditions that can arise in a variety of ways. For example, err:XD0050 is raised for
all errors in XPath expressions in value templates. The implementation may use
cause to record an underlying error (for example, the XPath error code). The error
codes that appear in cause are implementation-dependent.

114

15. Steps

If the error was caused by a specific document, or by the location of some erroneous
construction in a specific document, the href, line, column, and offset attributes
identify this location. Generally, the error location is identified either with line and
column numbers or with an offset from the beginning of the document, but not
usually both.

The content of the c:error element is any well-formed XML. Specific steps, or
specific implementations, may provide more detail about the format of the content of
an error message.

15.7.3.3. Error Example

Consider the following XSLT stylesheet:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

<xsl:template match="/">
 <xsl:message terminate="yes">
 <xsl:text>This stylesheet is </xsl:text>
 <emph>pointless</emph>
 <xsl:text>.</xsl:text>
 </xsl:message>
</xsl:template>

</xsl:stylesheet>

If it was used in a step named “xform” in a p:try, the following error document
might be produced:

<c:errors xmlns:c="http://www.w3.org/ns/xproc-step">
 <c:error name="xform" type="p:xslt"
 href="style.xsl" line="6">This stylesheet is
<emph>pointless</emph>.</c:error>
</c:errors>

It is not an error for steps to generate non-standard error output as long as it is well-
formed.

115

15. Steps

15.7.4. Example

A pipeline might attempt to process a document by dispatching it to some web
service. If the web service succeeds, then those results are passed to the rest of the
pipeline. However, if the web service cannot be contacted or reports an error, the
p:catch step can provide some sort of default for the rest of the pipeline.

Example 9. An Example Try/Catch

<p:try>
 <p:http-request method="post" href="http://example.com/form-action">
 <p:with-input>
 <p:inline content-type="application/x-www-form-urlencoded"
 >name=W3C&spec=XProc</p:inline>
 </p:with-input>
 </p:http-request>
 <p:catch>
 <p:identity>
 <p:with-input port="source">

<p:inline>
 <c:error>HTTP Request Failed</c:error>
</p:inline>

 </p:with-input>
 </p:identity>
 </p:catch>
</p:try>

15.8. Atomic Steps
[Definition: An atomic step is a step that does not contain a subpipline when it is
invoked.] The built-in steps described in [Steps 3.0] are atomic. Steps like
p:for-each and p:try that always have a subpipline are not atomic.

Steps declared with p:declare-step are atomic when they are invoked. It is
implementation-dependent whether or not atomic steps can be defined through some
other means.

The following table gives an overview over the types of atomic steps and the terms
associated with these types:

116

15. Steps

Provider Namespace (Prefix) Implemented in Term

XProc processor

http://www.w3.org/ns/xproc
(p:)

XProc

Processor-provided
or standard (atomic)
step implemented in
XProc (there are
currently no such
steps defined)

Other technology
Processor-provided
or standard (atomic)
step

Other namespace

XProc

Processor-provided
extension (atomic)
step implemented in
XProc

Other technology
Processor-provided
extension (atomic)
step

Other (pipeline
author or third
party)

Other namespace

XProc
User-defined
(atomic) (extension)
step

Other technology
(Third-party)
(atomic) extension
step

15.8.1. Processor-provided standard atomic steps

In addition to the six step types described in the preceding sections, XProc provides a
standard library of atomic step types. The full vocabulary of standards steps is
described in [Steps 3.0].

In addition to these standard atomic steps, other specifications by the same
standardization body may define other optional steps in the XProc namespace, for
example, validation or file system related steps.

Whether all steps in the XProc namespace are referred to as “standard (atomic) steps”
or only the steps in the standard step library, depends on context and is intentionally

117

15. Steps

kept fuzzy. Steps in the XProc namespace that are not included in the standard step
library may also be referred to as “optional standard steps” if further distinction is
required.

All of the standard (including optional), atomic steps are invoked in the same way:

<p:atomic-step
 name? = NCName>
 (p:with-input |
 p:with-option)*
</p:atomic-step>

Where “p:atomic-step” must be in the XProc namespace and must either be
declared in the standard library or in an optional standard library for the XProc
version supported by the processor (see Section 13, “Versioning Considerations”).

Like the aforementioned processor-provided steps, hypothetical processor-provided
atomic steps implemented in XProc are also in the XProc namespace and need not be
explicitly imported by the surrounding pipeline.

15.8.2. Extension Steps

Pipeline authors may also have access to additional steps not defined or described by
this specification. Such an external step is invoked just like the standard steps:

<ext:atomic-step
 name? = NCName>
 (p:with-input |
 p:with-option)*
</ext:atomic-step>

Extension steps must not be in the XProc namespace and there must be a visible step
declaration at the point of use (see Section 14.2, “Scoping of Names”).

If the relevant step declaration has no subpipeline, then that step invokes the declared
external step, which the processor must know how to perform. These steps are
implementation-defined extensions.

If the relevant step declaration has a subpipeline, then that step runs the declared
subpipeline. These steps are user- or implementation-defined extensions. Pipelines

118

15. Steps

can refer to themselves (recursion is allowed), to pipelines defined in imported
libraries, and to other pipelines in the same library if they are in a library.

It is a static error (err:XS0010) if a pipeline contains a step whose specified inputs,
outputs, and options do not match the signature for steps of that type.

It is a dynamic error (err:XD0017) if the running pipeline attempts to invoke an
external step which the processor does not know how to perform.

The presence of other compound steps is implementation-defined; XProc provides no
standard mechanism for defining them or describing what they can contain. It is a
static error (err:XS0048) to use a declared step as a compound step.

16. Other pipeline elements

16.1. p:input
The declaration of an input identifies the name of the port, whether or not the port
accepts a sequence, whether or not the port is a primary input port, what content types
it accepts, and may provide a connection to default inputs for the port.

An input declaration has the following form:

<p:input
 port = NCName
 sequence? = boolean
 primary? = boolean
 select? = XPathExpression
 content-types? = ContentTypes
 href? = { anyURI }
 exclude-inline-prefixes? = ExcludeInlinePrefixes>
 ((p:empty |
 (p:document |
 p:inline)*) |
 anyElement*)
</p:input>

The attributes that can appear on p:input are the common attributes and:

119

16. Other pipeline elements

port
The port attribute defines the name of the port. It is a static error (err:XS0011)
to identify two ports with the same name on the same step.

sequence
The sequence attribute determines whether or not a sequence of documents is
allowed on the port. If sequence is not specified, or has the value false, then it is
a dynamic error (err:XD0006) unless exactly one document appears on the
declared port.

primary
The primary attribute is used to identify the primary input port. An input port is
a primary input port if primary is specified with the value true or if the step has
only a single input port and primary is not specified. It is a static
error (err:XS0030) to specify that more than one input port is the primary.

select
If a connection is provided in the declaration, then select may be used to select
a portion of the input identified by the p:empty, p:document, or p:inline
elements in the p:input.

With the exception that p:input cannot establish a connection to another step,
what is said about the select attribute in p:with-input equally applies to
p:input.

The select expression on p:input applies only if the default connection is used.
If an explicit connection is provided by the caller, then the default select
expression is ignored.

content-types
The content-types attribute lists one or more (space separated) content types
that this input port will accept. If the attribute is not specified, */* is assumed.
See Section 3.4, “Specifying content types”.

href
As described in p:with-input.

exclude-inline-prefixes
The exclude-inline-prefixes allows the pipeline author to exclude some
namespace declarations in inline content, see p:inline.

120

16. Other pipeline elements

On p:declare-step, any binding provided in p:input is a default connection for
the port, if no other connection is provided, see Section 16.2.1, “Connection
precedence”.

The p:pipe element is explicitly excluded from a declaration because it would make
the default value of an input dependent on the execution of some part of the pipeline.
If a runtime binding is provided for an input port, implementations must not
attempt to dereference the default bindings. In the case of p:document connections,
the URI is dereferenced only when the default connection is actually used, not during
static analysis.

16.2. p:with-input
An input connection has the following form:

<p:with-input
 port? = NCName
 select? = XPathExpression
 href? = { anyURI }
 pipe? = string
 exclude-inline-prefixes? = ExcludeInlinePrefixes>
 ((p:empty |
 (p:document |
 p:pipe |
 p:inline)*) |
 anyElement*)
</p:with-input>

The attributes that can appear on p:with-input are the common attributes and:

port
If the port is specified, then this is a binding for the specified port. If no port is
specified, then:

• In a p:viewport or p:for-each, it is a binding for the step’s single,
anonymous input port.

• In a p:choose, p:when or p:if, it is a binding for the context item for the
test expression(s).

121

16. Other pipeline elements

• Elsewhere, it is a binding for the primary input port of the step in which it
occurs. It is a static error (err:XS0065) if there is no primary input port.

It is a static error (err:XS0043) to specify a port name on p:with-input for
p:for-each, p:viewport, p:choose, p:when, or p:if.

It is a static error (err:XS0114) if a port name is specified and the step type being
invoked does not have an input port declared with that name.

It is a static error (err:XS0086) to provide more than one p:with-input for the
same port.

If no connection is provided for a primary input port, the input will be connected
to the default readable port. It is a static error (err:XS0032) if no connection is
provided and the default readable port is undefined.

select
If a select expression is specified, it is effectively a filter on the input. The
expression will be evaluated once for each document that appears on the port,
using that document as the context item. The result of evaluating the expression
(on each document that appears, in the order they arrive) will be the sequence of
items that the step receives on the port.

The rules as stated in Section 3.3, “Creating documents from XDM step results”
will be applied to the members of this sequence and will turn these into separate
documents. It is a dynamic error (err:XD0016) if the select expression on a
p:input or p:with-input returns attribute nodes or function items.

If no documents are received, the expression is not evaluated and the step
receives no input on the port.

For example:

<p:with-input port="source">
 <p:document href="http://example.org/input.html"/>
</p:with-input>

provides a single document, but

122

16. Other pipeline elements

<p:with-input xmlns:html="http://www.w3.org/1999/xhtml"
 port="source" select="//html:div">
 <p:document href="http://example.org/input.html"/>
</p:with-input>

provides a sequence of zero or more documents, one for each html:div in
http://example.org/input.html. (Note that in the case of nested html:div
elements, this will result in the same content being returned in several
documents.)

A select expression can equally be applied to input read from another step. This
input:

<p:with-input xmlns:html="http://www.w3.org/1999/xhtml"
 port="source" select="//html:div">
 <p:pipe step="origin" port="result"/>
</p:with-input>

provides a sequence of zero or more documents, one for each html:div in the
document (or each of the documents) that is read from the result port of the
step named origin.

The base URI of the document that results from a select expression is the base
URI of the matched element or document. The document does not have a base
URI if it results from selecting an atomic value.

href
The href attribute is a shortcut for a p:document child with an href attribute
having the same value as this href attribute.

If href is specified, it is a static error (err:XS0081) if any child elements other
than p:documentation and p:pipeinfo are present.

It is a static error (err:XS0085) if both a href attribute and a pipe attribute are
present.

pipe
The pipe attribute is a shortcut for one or more p:pipe children. The attribute
value must be whitespace-separated list of tokens or empty. It is a static
error (err:XS0090) if the value of the pipe attribute contains any tokens not of

123

16. Other pipeline elements

the form port-name, port-name@step-name, or @step-name. If “port-name” is
omitted, the connection is to the primary output port of the step named
“step-name”. If “@step-name” is omitted, the connection is to the specified port
on the same step as the step associated with the default readable port. If the
value is empty, the connection is to the default readable port.

If pipe is specified, it is a static error (err:XS0082) any child elements other than
p:documentation and p:pipeinfo are present.

It is a static error (err:XS0085) if both an href attribute and a pipe attribute are
present.

exclude-inline-prefixes
The exclude-inline-prefixes allows the pipeline author to exclude some
namespace declarations in inline content, see p:inline.

A p:with-input element with no children (e.g., “<p:with-input/>”) is treated
implicitly as if it contained only “<p:pipe/>”, which is in turn equivalent to a
binding to the default readable port.

If the p:with-input contains elements not in the XProc namespace, they are implicit
inlines.

16.2.1. Connection precedence

XProc 3.0 introduces a number of new connection defaulting mechanisms to make
pipeline authoring easier. Defaults only apply if there’s no explicit connection, and
they apply differently to primary and secondary inputs.

Primary input ports
For a given primary input port:

1. If there is a p:with-input for that port and it provides a binding, even an
implicit one, that binding is used.

2. If there’s no p:with-input for that port and there is a default readable port,
the input will be connected to the default readable port.

124

16. Other pipeline elements

3. If there’s no p:with-input for that port and there’s no default readable
port, then the default connection from the declaration’s p:input will be
used. It will be a static error (err:XS0032) if there is no default connection.

Secondary input ports
For a given secondary input port:

1. If there is a p:with-input for that port and it provides a binding, even an
implicit one, that binding is used.

2. If there’s no p:with-input for that port then the default connection from
the declaration’s p:input will be used. It will be a static error (err:XS0032)
if there is no default connection.

16.3. p:output
A p:output identifies an output port.

<p:output
 port? = NCName
 sequence? = boolean
 primary? = boolean
 content-types? = ContentTypes />

The attributes that can appear on p:output are the common attributes and:

port
The port attribute defines the name of the port. It is a static error (err:XS0011)
to identify two ports with the same name on the same step.

sequence
An output declaration can indicate if a sequence of documents is allowed to
appear on the declared port. If sequence is specified with the value true, then a
sequence is allowed. If sequence is not specified on p:output, or has the value
false, then it is a dynamic error (err:XD0007) if the step does not produce exactly
one document on the declared port.

125

16. Other pipeline elements

primary
The primary attribute is used to identify the primary output port. An output
port is a primary output port if primary is specified with the value true or if the
step has only a single output port and primary is not specified. It is a static
error (err:XS0014) to identify more than one output port as primary.

content-types
An output declaration can indicate the content types of the documents
appearing on that port. If content-types is specified then only documents
matching these content types are allowed to appear on that port. If the attribute
is not specified, */* is assumed. It is a dynamic error (err:XD0042) if a document
arrives on an output port whose content type is not accepted by the output port
specification.

Note
Implementations are free to perform static checking of the
connected ports and indicate that the content types of the
connected ports will not match, however they must not raise an
error statically.

On compound steps, the declaration may be accompanied by a connection for the
output.

<p:output
 port? = NCName
 sequence? = boolean
 primary? = boolean
 content-types? = ContentTypes
 href? = { anyURI }
 pipe? = string
 exclude-inline-prefixes? = ExcludeInlinePrefixes>
 ((p:empty |
 (p:document |
 p:pipe |
 p:inline)*) |
 anyElement*)
</p:output>

126

16. Other pipeline elements

The additional attributes that can appear on an output declaration on a compound
step are:

href
As described in p:with-input.

pipe
As described in p:with-input.

exclude-inline-prefixes
The exclude-inline-prefixes allows the pipeline author to exclude some
namespace declarations in inline content, see p:inline.

Finally, on a p:declare-step that declares a pipeline, the p:output can specify
serialization options.

<p:output
 port? = NCName
 sequence? = boolean
 primary? = boolean
 content-types? = ContentTypes
 href? = { anyURI }
 pipe? = string
 exclude-inline-prefixes? = ExcludeInlinePrefixes
 serialization? = map(xs:QName,item()*)>
 ((p:empty |
 (p:document |
 p:pipe |
 p:inline)*) |
 anyElement*)
</p:output>

serialization
The serialization attribute can be used to provide serialization parameters.

It is a static error (err:XS0029) to specify a connection for a p:output inside a
p:declare-step for an external step.

If a connection is provided for a p:output, documents are read from that connection
and those documents form the output that is written to the output port. In other
words, placing a p:document inside a p:output causes the processor to read that

127

16. Other pipeline elements

document and provide it on the output port. It does not cause the processor to write the
output to that document.

16.3.1. Serialization parameters

The serialization attribute allows the user to request serialization parameters on
an output port. These parameters control serialization as defined by [Serialization].

If the pipeline processor serializes the output on a port, it must use the serialization
parameters specified. If a serialization document property is present, the
serialization properties specified by the serialization document property must be
merged with the properties specified with the serialization attribute first. For
further details see the explanation of the serialization document property in
Section 3.1, “Document Properties”.

If the processor is not serializing (if, for example, the pipeline has been called from
another pipeline), then serialization does not apply. The serialization parameter map
is computed (and must therefore be statically and syntactically valid), but the
processor must not raise an error if the output could not be serialized with those
parameters.

It is a dynamic error (err:XD0020) if the combination of serialization options specified
or defaulted is not allowed. Implementations must check that all of the specified
serialization options are allowed if they serialize the specified output. If the specified
output is not being serialized implementations may but are not required to check that
the specified options are allowed.

In order to be consistent with the rest of this specification, values for boolean
serialization parameters can also use one of the XML Schema lexical forms for
boolean: true, false, 1, or 0. This is different from the [Serialization] specification,
which uses yes and no. No change in semantics is implied by this different spelling.

The default value of any serialization parameters not specified on a particular output
is implementation-defined.

128

16. Other pipeline elements

16.3.1.1. Serialization method

The method option controls the serialization method used by this component with
standard values of html, xml, xhtml, text and json. Only the xml value is required
to be supported. Implementations may support other method values but their results
are implementation-defined.

If the serialization parameter method is not specified, the processor should select a
method based on the document’s content-type property:

• For documents with content types application/xml, text/xml, and
application/*+xml (except for application/xhtml+xml), serialization method
xml should be used.

• For documents with content type application/xhtml+xml serialization method
xhtml should be used.

• For documents with content type text/html serialization method html should
be used.

• For documents with text media types serialization method text should be used.

• For documents with JSON media types serialization method json should be used.

• The serialization method for documents with other media types is
implementation-defined.

If serialization method xml or html (if supported) is chosen, either explicitly or
implicitly, the following default values must be used:

• Parameter version is set to 1.0.

• Parameter encoding is set to UTF-8.

• Parameter omit-xml-declaration is set to false.

129

16. Other pipeline elements

16.3.1.2. Minimal conformance

A minimally conforming implementation must support the xml output method with
the following option values:

• The version must support the value 1.0.

• The encoding must support the value UTF-8.

• The omit-xml-declaration must be supported.

All other option values may be ignored for the xml output method.

If a processor chooses to implement an option for serialization, it must conform to
the semantics defined in the [Serialization] specification.

16.4. Variables and Options
Variables and options provide a mechanism for pipeline authors to construct
temporary results and hold onto them for reuse.

Variables are created in compound steps and, like XSLT variables, are single
assignment, though they may be shadowed by subsequent declarations of other
variables with the same name.

Options can be declared on atomic or compound steps. The value of an option can be
specified by the caller invoking the step. Any value specified by the caller takes
precedence over the default value of the option.

16.4.1. p:variable

A p:variable declares a variable and associates a value with it. Variable declarations
may optionally specify the type of the variable using an [XPath 3.1] sequence Type.

130

16. Other pipeline elements

https://www.w3.org/TR/xpath-31/#dt-sequence-type

<p:variable
 name = EQName
 as? = XPathSequenceType
 select = XPathExpression
 collection? = boolean
 href? = { anyURI }
 pipe? = string
 exclude-inline-prefixes? = ExcludeInlinePrefixes>
 ((p:empty |
 (p:document |
 p:pipe |
 p:inline)*) |
 anyElement*)
</p:variable>

The attributes that can appear on p:variable are the common attributes and:

name
The name of the variable must be an EQName. If it does not contain a prefix
then it is in no namespace. It is a static error (err:XS0028) to declare an option or
variable in the XProc namespace. It is a static error (err:XS0087) if the name
attribute on p:option or p:variable has a prefix which is not bound to a
namespace.

It is a static error (err:XS0088) if the qualified name of a p:variable shadows the
name of a static option.

as
The type of the value may be specified in the as attribute using an XPath
sequence type, see Section 11.4, “Variable and option types”.

select
The variable’s value is specified with a select attribute. The select attribute
must be specified. The content of the select attribute is an XPath expression
which will be evaluated to provide the value of the variable. It is a static
error (err:XS0094) if a p:variable does not have a select attribute.

The select expression is evaluated as an XPath expression using the
appropriate context as described in Section 7.2.2, “XPath in XProc”, for the
enclosing container. The precise details about what XPath expressions are

131

16. Other pipeline elements

allowed (for example, can the expression declare a function) is implementation-
defined.

collection
If collection is unspecified or has the value false, then it has no effect.

If collection is true, the context item is undefined. All of the documents that
appear on the connection for the p:variable will be available as the default
collection within select expression.

href
As described in p:with-input.

pipe
As described in p:with-input.

exclude-inline-prefixes
The exclude-inline-prefixes allows the pipeline author to exclude some
namespace declarations in inline content, see p:inline.

Steps are connected together by their input and output ports. Variables are connected
to steps by their input, which provides the context node for the expression, and by
the expressions that contain references to them. Any step which contains a reference
to a variable effectively consumes the “output” of the variable. It is a static
error (err:XS0076) if there are any loops in the connections between steps and
variables: no step can refer to a variable if there is any sequence of connections from
that step that leads back to the input that provides the context node for the
expression that defines the value of the variable.

If collection is true, the context item for the expression is undefined. Otherwise,
the context item for the expression comes from the document connections, if they are
specified. If they are not specified, the context item comes from the default readable
port (computed as if p:variable was an atomic step). If no default readable port exists,
the context item is undefined.

It is a dynamic error (err:XD0001) if an XPath expression makes reference to the
context item, size, or position when the context item is undefined. It is a dynamic
error (err:XD0065) to refer to the context item, size, or position if a sequence of
documents appears on the connection that provides the context.

132

16. Other pipeline elements

Since all in-scope bindings are present in the Processor XPath Context as variable
bindings, select expressions may refer to the value of in-scope bindings by variable
reference.

16.4.2. p:option

A p:option declares an option and associates a default value with it. Option
declarations may optionally specify the type of the option using an [XPath 3.1]
sequence Type.

<p:option
 name = EQName
 as? = XPathSequenceType
 values? = string
 static? = boolean
 required? = boolean
 select? = XPathExpression
 visibility? = private|public />

The attributes that can appear on p:option are the common attributes and:

name
The name of the option must be an EQName. If it does not contain a prefix then
it is in no namespace. It is a static error (err:XS0028) to declare an option or
variable in the XProc namespace. It is a static error (err:XS0087) if the name
attribute on p:option or p:variable has a prefix which is not bound to a
namespace.

It is a static error (err:XS0088) if the qualified name of a p:option shadows the
name of a static option.

as
The type of the value may be specified in the as attribute using an XPath
sequence type, see Section 11.4, “Variable and option types”.

values
A list of acceptable values may be specified in the values attribute. If specified,
the value of the values attribute must be a list of atomic values expressed as an

133

16. Other pipeline elements

https://www.w3.org/TR/xpath-31/#dt-sequence-type

XPath sequence, for example: ('one', 'two', 'three'). It is a static
error (err:XS0101) if the values list is not an XPath sequence of atomic values.

The values list is an additional constraint on the acceptable values for the option.
It is a dynamic error (err:XD0019) if an option declares a list of acceptable values
and an attempt is made to specify a value that is not a member of that list.

The option value must satisfy the as type, if one is provided, and must be equal
to (XPath “eq”) one of the listed values. It is possible to combine as and values
in ways that exclude all actual values (for example, as="xs:integer" and
values="(1.5,’pi’)"). Doing so will make it impossible to specify a value for
the option.

static
An indication of whether the option is to be evaluated statically or not. See
Section 11.3, “Static Options”. If static is not specified, it defaults to “false”.

required
An option may declare that it is required by specifying the value true for the
required attribute. If an option is required, it is a static error (err:XS0018) to
invoke the step without specifying a value for that option. If required is not
specified, it defaults to “false”.

select
If an option is not required, its default value may be specified with a select
attribute. If no default value is specified, the default value is the empty
sequence.

If specified, the content of the select attribute is an XPath expression which will
be evaluated to provide the default value for the option.

The default value of an option is specified with an XPath expression. It must be a
statically valid expression at that point. Consequently, if it contains option
references, these can only be references to preceding non-static options on the
step or to in-scope static options. It is a dynamic error (err:XD0001) if an XPath
expression makes reference to the context item, size, or position when the
context item is undefined. This error will always arise if the select expression
refers to the context item because there can never be a context item for p:option
default values.

134

16. Other pipeline elements

The precise details about what XPath expressions are allowed (for example, can
the expression declare a function) is implementation-defined.

visibility
If the p:option is a child of a p:library, the visibility attribute controls
whether the option is visible to an importing pipeline. If visibility is set to
“private”, the option is visible inside the p:library but not visible to any
pipeline importing the p:library. If the visibility attribute is missing, “public”
is assumed. If the p:option is not a child of a p:library the attribute has no
effect and is ignored.

It is a static error (err:XS0004) to declare two or more options on the same step with
the same name.

The following errors apply to options:

• It is a static error (err:XS0017) to specify that an option is both required and has
a default value.

• It is a static error (err:XS0095) to specify that an option is both required and
static.

The pipeline author may use p:with-option on a step when it is invoked. Values
specified with p:with-option override any default values specified.

16.4.3. p:with-option

A p:with-option provides an actual value for an option when a step is invoked.

135

16. Other pipeline elements

<p:with-option
 name = EQName
 as? = XPathSequenceType
 select = XPathExpression
 collection? = boolean
 href? = { anyURI }
 pipe? = string
 exclude-inline-prefixes? = ExcludeInlinePrefixes>
 ((p:empty |
 (p:document |
 p:pipe |
 p:inline)*) |
 anyElement*)
</p:with-option>

The attributes that can appear on p:with-option are the common attributes and:

name
The name of the option must be a EQName. If it does not contain a prefix then it
is in no namespace. It is a static error (err:XS0031) to use an option name in
p:with-option if the step type being invoked has not declared an option with
that name.

It is a static error (err:XS0080) to include more than one p:with-option with
the same option name as part of the same step invocation.

as
The type of the value may be specified in the as attribute using an XPath
sequence type, see Section 11.4, “Variable and option types”.

select
The actual value is specified with a select attribute. The select attribute must
be specified. The value of the select attribute is an XPath expression which will
be evaluated to provide the value of the option.

collection
If collection is unspecified or has the value false, then it has no effect.

If collection is true, the context item is undefined. All of the documents that
appear on the connection for the p:with-option will be available as the default
collection within select expression.

136

16. Other pipeline elements

href
As described in p:with-input.

pipe
As described in p:with-input.

exclude-inline-prefixes
The exclude-inline-prefixes allows the pipeline author to exclude some
namespace declarations in inline content, see p:inline.

Any p:with-option which contains a reference to a variable effectively consumes
the “output” of the p:variable or p:option that defines that variable. It is a static
error (err:XS0076) if there are any loops in the connections between steps and
variables: no step can refer to a variable if there is any sequence of connections from
that step that leads back to the input that provides the context node for the
expression that defines the value of the variable.

If collection is true, the context item for the expression is undefined. Otherwise,
the context item for the expression comes from the document connections, if they are
specified. If they are not specified, the context item comes from the default readable
port of the step. If no default readable port exists, the context item is undefined.

It is a dynamic error (err:XD0001) if an XPath expression makes reference to the
context item, size, or position when the context item is undefined. It is a dynamic
error (err:XD0065) to refer to the context item, size, or position if a sequence of
documents appears on the connection that provides the context.

Since all in-scope bindings are present in the Processor XPath Context as variable
bindings, select expressions may refer to the value of in-scope bindings by variable
reference.

It is a static error (err:XS0092) if a p:with-option attempts to change the value of an
option that is declared static. See Section 11.3, “Static Options”.

16.4.3.1. Syntactic Shortcut for Option Values

Namespace qualified attributes on a step are extension attributes. Attributes, other
than name, that are not namespace qualified are treated as a syntactic shortcut for

137

16. Other pipeline elements

specifying the value of an option. In other words, the following two steps are
equivalent:

The first step uses the standard p:with-option syntax:

<ex:stepType>
 <p:with-option name="option-name" select="'some value'"/>
</ex:stepType>

The second step uses the syntactic shortcut:

<ex:stepType option-name="some value"/>

There are some limitations to this shortcut syntax:

1. It only applies to option names that are not in a namespace.

2. It only applies to option names that are not otherwise used on the step, such as
“name”.

For the value of an option’s syntactic shortcut attribute, the following applies:

• [Definition: A map attribute is an option’s syntactic shortcut attribute for which
the option’s sequence type is a map or array.] The attribute’s value is interpreted
directly as an XPath expression, which must result in a value of the applicable
datatype.

• For any other option’s sequence type it is considered an attribute value template.
The context node for the attribute value template comes from the default
readable port for the step on which they occur. If there is no such port, the
context node is undefined.

As with other attribute value templates, the attribute’s string value, as an
xs:untypedAtomic, is used as the value of the option. Function conversion rules
apply to convert this untyped atomic value to the option’s sequence type.

It is a static error (err:XS0027) if an option is specified with both the shortcut form
and the long form. It is a static error (err:XS0031) to use an option on an atomic step

138

16. Other pipeline elements

that is not declared on steps of that type. It is a static error (err:XS0092) to specify a
value for an option that is declared static.

The syntactic shortcuts apply equally to standard atomic steps and extension atomic
steps.

16.5. p:declare-step
A p:declare-step provides the type and signature of a pipeline or an external step.
Pipelines contain a subpipeline which defines what the declared step does.
[Definition: An external step is one supported by the implementation, but which has
no exposed subpipeline.]

The standard XProc atomic steps (p:add-attribute, p:add-xml-base …) are all
external steps. Whether or not an implementation allows users to provide their own
external steps is implementation-dependent. A p:declare-step must be provided for
every pipeline and external step that is used in a pipeline.

When a declared step is evaluated directly by the XProc processor (as opposed to
occurring as an atomic step in some container), how the input and output ports are
connected to documents is implementation-defined.

A step declaration is not a step in its own right. Sibling steps cannot refer to the
inputs or outputs of a p:declare-step using p:pipe; only instances of the type can
be referenced.

16.5.1. Declaring pipelines

When a p:declare-step declares a pipeline, that pipeline encapsulates the behavior
of the specified subpipeline. Its children declare inputs, outputs, and options that the
pipeline exposes and identify the steps in its subpipeline.

139

16. Other pipeline elements

<p:declare-step
 name? = NCName
 type? = EQName
 psvi-required? = boolean
 xpath-version? = decimal
 exclude-inline-prefixes? = ExcludeInlinePrefixes
 version? = 3.0
 visibility? = private|public>
 (p:import |
 p:import-functions)*,
 (p:input |
 p:output |
 p:option)*,
 p:declare-step*,
 subpipeline?
</p:declare-step>

The attributes that can appear on p:declare-step are the common attributes and:

name
The name attribute provides a name for the step. This name can be used within
the subpipeline to refer back to the declaration, for example, to read from its
inputs. See also Section 2.1.1, “Step names”.

type
The type attribute provides a type for the step. Step types are used as the name
of the element by which the step is invoked. See also Section 2.1.2, “Step types”.

The value of the type can be from any namespace provided that the expanded-
QName of the value has a non-null namespace URI. It is a static
error (err:XS0025) if the expanded-QName value of the type attribute is in no
namespace or in the XProc namespace. Neither users nor implementers may
define additional steps in the XProc namespace.

psvi-required
The psvi-required attribute allows the author to declare that a step relies on
the processor’s ability to pass PSVI annotations between steps, see Section 9,
“PSVIs in XProc”. If the attribute is not specified, the value “false” is assumed.

xpath-version
The requested xpath-version must be used to evaluate XPath expressions
subject to the constraints outlined in Section 7.2.2, “XPath in XProc”. If the

140

16. Other pipeline elements

attribute is not specified, the value “3.1” is assumed. It is a static
error (err:XS0110) if the requested XPath version is less than “3.1”.

exclude-inline-prefixes
The a description of exclude-inline-prefixes, see p:inline.

version
The version attribute identifies the version of XProc for which this step
declaration was authored. If the p:declare-step has no ancestors in the XProc
namespace, then it must have a version attribute. It is a static
error (err:XS0062) if a required version attribute is not present. See Section 13,
“Versioning Considerations”.

visibility
If the p:declare-step is a child of a p:library the visibility attribute
controls whether the step is visible to an importing pipeline. If visibility is set
to private, the step type is only visible inside the p:library and is not visible
to any pipeline importing the p:library. If the visibility attribute is missing,
public is assumed. If the p:declare-step is not a child of a p:library the
attribute has no effect and is ignored.

In the general case, the children of a p:declare-step can be grouped into several
sections. All of these sections, except the subpipeline, may be empty.

1. Imports must come first.

2. The prologue follows the imports. [Definition: The prologue consists of the
p:input, p:output, and p:option elements.]

3. The prologue may be followed by any number of inline p:declare-step
elements that declare additional steps.

4. Finally, there must be at least one step in the subpipeline.

Options in the prologue may not shadow each other. It is a static error (err:XS0091) if
an p:option shadows another option declared within the same p:declare-step.
(Within the subpipeline, variables may shadow (non-static) options and lexically
preceding variables.)

141

16. Other pipeline elements

The prologue ends with additional p:declare-step elements, if any, and is followed
by the subpipeline. Any step imported or declared in the prologue of a pipeline may
be invoked as a step within the subpipeline of that pipeline.

The environment inherited by the subpipeline is the empty environment with these
modifications:

• All of the declared inputs are added to the readable ports in the environment.

• If a primary input port is declared, that port is the default readable port, otherwise
the default readable port is undefined.

• The in-scope bindings at the beginning of a p:declare-step are limited to the
lexically preceding, statically declared options.

If a primary output port is declared and that port has no connection, then it is connected
to the primary output port of the last step in the subpipeline. It is a static
error (err:XS0006) if the primary output port is unconnected and the last step in the
subpipeline does not have a primary output port.

16.5.2. Declaring external steps

The distinction between a pipeline declaration and an external step declaration
hinges on the presence or absence of a subpipeline. A step declaration that does not
contain a subpipeline is, by definition, declaring an external step.

External step declarations may not import other pipelines or functions, may not
declare static options, and may not declare additional steps. In other words, the
content of an external step declaration consists exclusively of p:input, p:output,
and p:option elements.

142

16. Other pipeline elements

<p:declare-step
 name? = NCName
 type? = EQName
 psvi-required? = boolean
 xpath-version? = decimal
 exclude-inline-prefixes? = ExcludeInlinePrefixes
 version? = 3.0
 visibility? = private|public>
 (p:input |
 p:output |
 p:option)*
</p:declare-step>

Implementations may use extension attributes to provide implementation-dependent
information about a declared step. For example, such an attribute might identify the
code which implements steps of this type.

It is not an error for a pipeline to include declarations for steps that a particular
processor does not know how to implement. It is, of course, an error to attempt to
evaluate such steps. The function p:step-available will return false when called
with the type name of such a step.

It is a dynamic error (err:XD0017) if the running pipeline attempts to invoke an
external step which the processor does not know how to perform.

16.6. p:library
A p:library is a collection of static options, and step declarations.

<p:library
 psvi-required? = boolean
 xpath-version? = decimal
 exclude-inline-prefixes? = ExcludeInlinePrefixes
 version? = 3.0>
 (p:import |
 p:import-functions)*,
 p:option*,
 p:declare-step*
</p:library>

143

16. Other pipeline elements

The version attribute identifies the version of XProc for which this library was
authored. If the p:library has no ancestors in the XProc namespace, then it must
have a version attribute. See Section 13, “Versioning Considerations”.

The requested xpath-version must be used to evaluate XPath expressions subject to
the constraints outlined in Section 7.2.2, “XPath in XProc”. If the attribute is not
specified, the value “3.1” is assumed. It is a static error (err:XS0110) if the requested
XPath version is less than “3.1”.

The psvi-required attribute allows the author to declare that a step relies on the
processor’s ability to pass PSVI annotations between steps, see Section 9, “PSVIs in
XProc”. If the attribute is not specified, the value “false” is assumed.

For a description of psvi-required, see Section 9, “PSVIs in XProc”; for
xpath-version, see Section 7.2.2, “XPath in XProc”; for exclude-inline-prefixes,
see p:inline.

Note
The steps declared in a pipeline library are referred to by their type.
It is not an error to put a p:declare-step without a type in a
p:library, but there is no standard mechanism for instantiating it or
referring to it. It is effectively invisible.

Like p:declare-step, within a library, imports must precede the prologue (any
static options), which must precede any declared steps.

Libraries can import pipelines and/or other libraries. See also Appendix H, Handling
Circular and Re-entrant Library Imports (Non-Normative).

16.7. p:import
An p:import loads a pipeline or pipeline library, making it available in the pipeline
or library which contains the p:import.

144

16. Other pipeline elements

<p:import
 href = anyURI />

An import statement loads the specified IRI and makes any pipelines declared within
it available to the current pipeline.

It is a static error (err:XS0052) if the URI of a p:import cannot be retrieved or if, once
retrieved, it does not point to a p:library or p:declare-step. It is a static
error (err:XS0053) to import a single pipeline if that pipeline does not have a type.

Attempts to retrieve the library identified by the URI value may be redirected at the
parser level (for example, in an entity resolver) or below (at the protocol level, for
example, via an HTTP Location: header). In the absence of additional information
outside the scope of this specification within the resource, the base URI of the library
is always the URI of the actual resource returned. In other words, it is the URI of the
resource retrieved after all redirection has occurred.

As imports are processed, a processor may encounter new p:import elements whose
library URI is the same as one it has already processed in some other context. This
may happen as a consequence of resolving the URI. If the actual base URI is the same
as one that has already been processed, the implementation must recognize it as the
same library and should not need to process the resource. Also, a duplicate, circular
chain of imports, or a re-entrant import is not an error and implementations must
take the necessary steps to avoid infinite loops and/or incorrect notification of
duplicate step definitions. It is not an error for a library to import itself. An example
of such steps is listed in Appendix H, Handling Circular and Re-entrant Library
Imports (Non-Normative).

A library is considered the same library if the base URI of the resource retrieved is
the same. If different base URIs resolve to the same library (for instance when a web
server returns the same document on different URLs), they must not be considered
the same imported library.

16.8. p:import-functions
An p:import-functions element identifies a library of externally defined functions
to be imported into the pipeline. After the functions have been imported, they are
available in the processor XPath context.

145

16. Other pipeline elements

<p:import-functions
 href = anyURI
 content-type? = ContentType
 namespace? = string />

href
The href attribute identifies the URI of the function library. It is a static
error (err:XS0103) if the URI of a p:import-functions element cannot be
retrieved or if, once retrieved, it points to a library that the processor cannot
import.

content-type
The content-type specifies what kind of library is expected at the URI. If no
type is specified, the way that the processor determines the type of the library is
implementation-defined.

namespace
If a namespace is specified, it must be a whitespace separated list of namespace
URIs. Only functions in those namespaces will be loaded.

The ability to import functions is optional. Whether or not a processor can import
functions, and if it can, what kinds of function libraries it can import from is
implementation-defined. Pipeline authors can use p:function-library-importable
to test whether or not a particular kind of library can be loaded.

Importing functions from a library implies loading and processing that library
according to its conventions (loading imports, resolving dependencies, etc.). It is a
static error (err:XS0104) if the processor cannot load the function library. This may
occur because the format is unknown, because it is a version of the library that the
processor does not recognize, or if it’s uninterpretable for any other reason. It is a
static error (err:XS0106) if the processor detects that a particular library is
unloadable. This may occur if the processor is, in principle, able to load libraries of
the specified format, but detects that the particuar library requested is somehow ill-
formed (syntactically invalid, has unsatisfiable dependencies or circular imports,
etc.).

Imported functions must be unique (they must not have the same name, namespace,
and arity). It is a static error (err:XS0105) if a function imported from a library has
the same name and arity as a function already imported.

146

16. Other pipeline elements

16.9. p:pipe
A p:pipe connects an input to a port on another step.

<p:pipe
 step? = NCName
 port? = NCName />

The p:pipe element connects to a readable port of another step. It identifies the
readable port to which it connects with the name of the step in the step attribute and
the name of the port on that step in the port attribute. It is a static error (err:XS0099)
if step or port are not valid instances of NCName.

If the step attribute is not specified, it defaults to the step which provides the default
readable port. If the port attribute is not specified, it defaults to the primary output
port of the step identified (explicitly or implicitly).

It is a static error (err:XS0067) if the step attribute is not specified, and there is no
default readable port. It is a static error (err:XS0068) if the port attribute is not
specified, and the step identified has no primary output port.

In all cases except when the p:pipe is within an p:output of a compound step, it is a
static error (err:XS0022) if the port identified by the p:pipe is not in the readable ports
of the step that contains the p:pipe.

A p:pipe that is a connection for an p:output of a compound step may connect to one
of the readable ports of the compound step or to an output port on one of the
compound step’s contained steps. In other words, the output of a compound step can
simply be a copy of one of the available inputs or it can be the output of one of its
children.

When the p:pipe is within an p:output of a compound step, it is a static
error (err:XS0078) if the port identified by the p:pipe is not in the readable ports of
the compound step and is not a readable port of a contained step.

16.10. p:inline
A p:inline provides a document inline.

147

16. Other pipeline elements

<p:inline
 exclude-inline-prefixes? = ExcludeInlinePrefixes
 content-type? = string
 document-properties? = map(xs:QName,item()*)
 encoding? = string>
 anyNode*
</p:inline>

The content-type attribute can be used to set the content type of the provided
document; the document-properties attribute can be used to set the document
properties of the provided document.

The document’s content type is determined statically. If a content-type is specified,
that is the content type. Otherwise, the content type is “application/xml”.

It is a dynamic error (err:XD0062) if the document-properties map contains a
content-type key and that key has a value that differs from the statically
determined content type.

The base URI of the document is the base URI of the p:inline element or of the
parent element in the case of an implicit inline. If document-properties provides a
value for “base-uri”, this value is the base URI of the document. It is a dynamic
error (err:XD0064) if the base URI is not both absolute and valid according to [RFC
3986].

How the content of a p:inline element is interpreted depends on the document’s
content type and the encoding attribute.

It is a dynamic error (err:XD0054) if an encoding is specified and the content type is
an XML media type or an HTML media type.

It is a dynamic error (err:XD0055) if the content type value specifies a character set
and the encoding attribute is absent.

It is a dynamic error (err:XD0039) if the encoding attribute is present and content
type value specifies a character set that is not supported by the implementation.

It is a dynamic error (err:XD0056) if an encoding is specified and the content of the
p:inline contains any XML markup. It is a dynamic error (err:XD0063) if the
p:inline contains any XML markup and has a content type that is not an XML media

148

16. Other pipeline elements

type or an HTML media type. In other words, in these cases, the entire content must be
a single text node. CDATA sections and character references do not count as markup
for this purpose because they will already have been replaced by the XML parser that
read the pipeline.

If the encoding attribute is present, the content must be decoded. The encoding
value “base64” must be supported and identifies the content as being base64-
encoded. An implementation may support encodings other than base64, but these
encodings and their names are implementation-defined. It is a static error (err:XS0069)
if the encoding specified is not supported by the implementation. It is a dynamic
error (err:XD0040) if the body is not correctly encoded per the value of the encoding
attribute.

If an encoding attribute is present, value templates are never expanded. The value of
[p:]expand-text is irrelevant and always ignored. Otherwise, the text content of
p:inline is subject to text value template expansion irrespective of its content type.
(Attribute value template expansion only applies to XML and HTML media types.)

The interpretation of the (possibly decoded) content depends on the document’s
content type.

Note
In the presence of text value templates, it is not possible to interpret the
non-XML characters until the templates have been expanded.

16.10.1. Inline XML and HTML content

If content-type is not specified or specifies an XML media type or an HTML media
type, then the content is XML. A new XML document is created by wrapping a
document node around the nodes which appear as children of p:inline.

The in-scope namespaces of the inline document differ from the in-scope namespace
of the content of the p:inline element in that bindings for all its excluded namespaces,
as defined below, are removed:

149

16. Other pipeline elements

• The XProc namespace itself (http://www.w3.org/ns/xproc) is excluded.

• A namespace URI designated by using an exclude-inline-prefixes attribute
on the enclosing p:inline is excluded.

• A namespace URI designated by using an exclude-inline-prefixes attribute
on any ancestor p:declare-step or p:library is also excluded. (In other
words, the effect of several exclude-inline-prefixes attributes among the
ancestors of p:inline is cumulative.)

The value of each prefix in the exclude-inline-prefixes attribute is interpreted as
follows:

• The value of the attribute is either #all, or a whitespace-separated list of tokens,
each of which is either a namespace prefix or #default. The namespace bound
to each of the prefixes is designated as an excluded namespace. It is a static
error (err:XS0057) if the exclude-inline-prefixes attribute does not contain
a list of tokens or if any of those tokens (except #all or #default) is not a prefix
bound to a namespace in the in-scope namespaces of the element on which it
occurs.

• The default namespace of the element on which exclude-inline-prefixes
occurs may be designated as an excluded namespace by including #default in
the list of namespace prefixes. It is a static error (err:XS0058) if the value
#default is used within the exclude-inline-prefixes attribute and there is
no default namespace in scope.

• The value #all indicates that all namespaces that are in scope for the element on
which exclude-inline-prefixes occurs are designated as excluded
namespaces.

The XProc processor must include all in-scope prefixes that are not explicitly
excluded. If the namespace associated with an excluded prefix is used in the
expanded-QName of a descendant element or attribute, the processor may include
that prefix anyway, or it may generate a new prefix.

Consider this example:

150

16. Other pipeline elements

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:c="http://www.w3.org/ns/xproc-step"
 version="3.0">
 <p:output port="result" serialization="map { 'indent': true() }"/>

 <p:identity xmlns:a="http://example.com/a"
 xmlns:b="http://example.com/b"
 xmlns:c="http://example.com/c">
 <p:with-input port="source">
 <p:inline exclude-inline-prefixes="a b">
 <doc>
 <b:part/>
 </doc>
 </p:inline>
 </p:with-input>
 </p:identity>

</p:declare-step>

which might produce a result like this:

 <doc xmlns:c="http://example.com/c">
 <b:part xmlns:b="http://example.com/b"/>
 </doc>

The declaration for “c” must be present because it was not excluded. The “part”
element uses the namespace bound to “b”, so some binding must be present. In this
example, the original prefix has been preserved, but it would be equally correct if a
different prefix had been used.

The text-node descendants of a p:inline may be text value templates. Attribute
descendants may be attribute value templates. This is controlled by the
[p:]expand-text and the p:inline-expand-text attribute. See Section 14.9.1,
“Expand text attributes”.

16.10.2. Inline text content

If the document’s content type is a text media type, then the content is text. A new text
document is created by joining the text nodes which appear as children of p:inline

151

16. Other pipeline elements

together to a single text node and wrapping a document node around it. Any
preceding or following whitespace-only text nodes will be preserved.

16.10.3. Inline JSON content

If the document’s content type is a JSON media type, then the context is JSON. A new
JSON document is created by joining the text values of children of p:inline together
and parse it as JSON.

It is a dynamic error (err:XD0057) if the text content does not conform to the JSON
grammar.

16.10.4. Other inline content

How a processor interprets other media types is implementation-defined.

16.10.5. Implicit inlines

As an authoring convenience, p:inline may be omitted if one or more element
nodes, optionally preceded and/or followed by whitespace occurs where a p:inline
is allowed. Whitespace around each element is ignored and the element is treated as
if it was enclosed within a p:inline element (with no attributes). Elements in the
XProc namespace are forbidden except for p:documentation and p:pipeinfo which
are ignored.

The following example demonstrates this implicit behaviour:

<p:identity name="identity" code="my:implicitinline1">
 <p:with-input port="source">
 <p xmlns="http://example.org/ns">Text</p>
 <p xmlns="http://example.org/ns">Other text</p>
 </p:with-input>
</p:identity>

Is interpreted as follows:

152

16. Other pipeline elements

<p:identity name="identity" code="my:implicitinline2">
 <p:with-input port="source">
 <p:inline><p xmlns="http://example.org/ns">Text</p></p:inline>
 <p:inline><p xmlns="http://example.org/ns">Other text</p></p:inline>
 </p:with-input>
</p:identity>

An explicit p:inline is required if the author wants to include top level comments,
processing instructions, or whitespace, or if the document element is in the XProc
namespace.

It is a static error (err:XS0079) if comments, non-whitespace text nodes, or processing
instructions occur as siblings of an element node that would be treated as an implicit
inline.

16.11. p:document
A p:document reads a document from a URI.

<p:document
 href = { anyURI }
 content-type? = string
 document-properties? = map(xs:QName,item()*)
 parameters? = map(xs:QName,item()*) />

The value of the href attribute, after expanding any attribute value templates, is a URI.
The URI is interpreted as an IRI reference. If it is relative, it is made absolute against
the base URI of the p:document element. It is a dynamic error (err:XD0064) if the base
URI is not both absolute and valid according to [RFC 3986].

The semantics of p:document are the same as the semantics of p:load where the
href option is the URI, the content-type option comes from content-type
attribute, the document-properties option comes from the document-properties
attribute, and the parameters option comes from the parameters attribute.

153

16. Other pipeline elements

Note
A p:document always reads from the specified IRI. In the context of a
p:input or p:with-input, this seems perfectly natural. In the
context of a p:output, this may seem a little asymmetrical. Putting a
p:document in a p:output causes the pipeline to read from the
specified IRI and provide that document as an output on that port.

Use p:store to store the results that appear on a p:output.

16.12. p:empty
A p:empty connects to an empty sequence of documents.

<p:empty />

If an empty binding is used, it must be the only binding for the port. It is a static
error (err:XS0089) if the p:empty binding appears as a sibling of any other binding,
including itself.

16.13. p:documentation
A p:documentation contains human-readable documentation.

<p:documentation>
 any-well-formed-content*
</p:documentation>

There are no constraints on the content of the p:documentation element.
Documentation is ignored by pipeline processors. See Section 14.6, “Documentation”.

16.14. p:pipeinfo
A p:pipeinfo contains ancillary information for steps in the pipeline.

154

16. Other pipeline elements

<p:pipeinfo>
 any-well-formed-content*
</p:pipeinfo>

There are no constraints on the content of the p:pipeinfo element, see Section 14.7,
“Processor annotations”.

17. Errors
Errors in a pipeline can be divided into two classes: static errors and dynamic errors.

17.1. Static Errors
[Definition: A static error is one which can be detected before pipeline evaluation is
even attempted.] Examples of static errors include cycles in the pipeline graph and
incorrect specification of inputs and outputs.

Static errors are fatal and must be detected before any steps are evaluated.

For a complete list of static errors, see Section F.1, “Static Errors”.

17.2. Dynamic Errors
[Definition: A dynamic error is one which occurs while a pipeline is being evaluated
(and cannot be detected before evaluation begins).] Examples of dynamic errors
include references to URIs that cannot be resolved, steps which fail, and pipelines
that exhaust the capacity of an implementation (such as memory or disk space).

Implementations are required to evaluate the pipeline graph according to the rules of
this specification, but they may choose to optimize pipeline execution in different
ways. This may cause steps to be evaluated in different orders which consequently
has an impact on error detection. The detection of dynamic errors is somewhat
implementation-dependent because the order of step execution may vary. In cases
where an implementation is able to run a pipeline without evaluating a particular
expression, or running a particular step, the implementation is never required
evaluate the expression or run the step solely in order to determine whether doing so

155

17. Errors

causes a dynamic error. For example, if a variable is declared but never referenced, an
implementation may choose whether or not to evaluate the expression which
initializes the variable, which means that if evaluating the variable’s initializer causes
a dynamic error, some implementations will signal this error and others will not.

There are some cases where this specification requires that steps must not be
executed: for example, the content of a p:when must not be executed if the test
condition is false. This means that an implementation must not signal any dynamic
errors that would arise if the contents of the p:when were executed.

An implementation may signal a dynamic error before any source document is
available, but only if it can determine that the error would be signaled for every
possible source document and every possible set of parameter values.

If a step fails due to a dynamic error, failure propagates upwards until either a p:try
is encountered or the entire pipeline fails. In other words, outside of a p:try, step
failure causes the entire pipeline to fail.

For a complete list of dynamic errors, see Section F.2, “Dynamic Errors”.

17.3. Step Errors
Several of the steps in the standard and option step library can generate dynamic
errors.

For a complete list of the dynamic errors raised by builtin pipeline steps, see
Section F.3, “Step Errors”.

A. Conformance
Conformant processors must implement all of the features described in this
specification except those that are explicitly identified as optional.

Some aspects of processor behavior are not completely specified; those features are
either implementation-dependent or implementation-defined.

156

A. Conformance

[Definition: An implementation-dependent feature is one where the implementation has
discretion in how it is performed. Implementations are not required to document or
explain how implementation-dependent features are performed.]

[Definition: An implementation-defined feature is one where the implementation has
discretion in how it is performed. Conformant implementations must document how
implementation-defined features are performed.]

A.1. Implementation-defined features
The following features are implementation-defined:

1. It is implementation-defined what additional step types, if any, are provided. See
Section 2.1, “Steps”.

2. The level of support for typed values in XDM instances in an XProc pipeline is
implementation-defined. See Section 3.2.1, “XML Documents”.

3. It is implementation-defined whether other media types not mentioned in this
document are treated as text media types as well. See Section 3.2.3, “Text
Documents”.

4. Serialization of other kinds of documents is implementation-defined. See
Section 3.2.5, “Other documents”.

5. It is implementation-defined if a processor accepts any other content type
shortcuts. See Section 3.4, “Specifying content types”.

6. How inputs are connected to documents outside the pipeline is implementation-
defined. See Section 4, “Inputs and Outputs”.

7. How pipeline outputs are connected to documents outside the pipeline is
implementation-defined. See Section 4, “Inputs and Outputs”.

8. In Version 3.0 of XProc, how (or if) implementers provide local resolution
mechanisms and how (or if) they provide access to intermediate results by URI
is implementation-defined. See Section 4.1, “External Documents”.

9. Except for cases which are specifically called out in , the extent to which
namespace fixup, and other checks for outputs which cannot be serialized, are
performed on intermediate outputs is implementation-defined. See Section 6.2,
“Namespace Fixup on XML Outputs”.

157

A.1. Implementation-defined features

10. There may be an implementation-defined mechanism for providing default
values for static p:options. If such a mechanism exists, the values provided must
match the sequence type declared for the option, if such a declaration exists. See
Section 7, “Initiating a pipeline”.

11. The exact format of the language string is implementation-defined but should be
consistent with the xml:lang attribute. See Section 8.1, “System Properties”.

12. It is implementation-defined which additional system properties are available
during static analysis. See Section 8.1, “System Properties”.

13. It is implementation-defined if the processor supports any other XPath extension
functions. See Section 8.11, “Other XPath Extension Functions”.

14. The value of the any other XPath extension functions during static analysis is
implementation-defined. See Section 8.11, “Other XPath Extension Functions”.

15. Whether or not the pipeline processor supports passing PSVI annotations
between steps is implementation-defined. See Section 9, “PSVIs in XProc”.

16. The exact PSVI properties that are preserved when documents are passed
between steps is implementation-defined. See Section 9, “PSVIs in XProc”.

17. It is implementation-defined what PSVI properties, if any, are produced by
extension steps. See Section 9, “PSVIs in XProc”.

18. Whether or not an extension attribute permits attribute value templates is
implementation-defined. See Section 10.1, “Attribute Value Templates”.

19. How outside values are specified for pipeline options on the pipeline initially
invoked by the processor is implementation-defined. See Section 11.2, “Options”.

20. The extent to which an implementation validates the lexical form of the
xs:anyURI is implementation-defined. See Section 11.5.2, “Special rules for
casting URIs”.

21. Support for pipeline documents written in XML 1.1 and pipeline inputs and
outputs that use XML 1.1 is implementation-defined. See Section 14, “Syntax
Overview”.

22. It is implementation-defined if any processing instructions are significant to an
implementation. See Section 14, “Syntax Overview”.

23. The semantics of p:pipeinfo elements are implementation-defined. See
Section 14.7, “Processor annotations”.

158

A.1. Implementation-defined features

24. It is implementation-defined whether a processor supports timeouts, and if it
does, how precisely and precisely how the execution time of a step is measured.
See Section 14.9.4, “Controlling long running steps”.

25. Precisely what “made available” means is implementation-defined. See
Section 14.9.5, “Status and debugging output”.

26. The set of URI schemes actually supported is implementation-defined. See
Section 14.11, “Common errors”.

27. The presence of other compound steps is implementation-defined; XProc
provides no standard mechanism for defining them or describing what they can
contain. See Section 15.8.2, “Extension Steps”.

28. The default value of any serialization parameters not specified on a particular
output is implementation-defined. See Section 16.3.1, “Serialization parameters”.

29. Implementations may support other method values but their results are
implementation-defined. See Section 16.3.1.1, “Serialization method”.

30. The serialization method for documents with other media types is
implementation-defined. See Section 16.3.1.1, “Serialization method”.

31. The precise details about what XPath expressions are allowed (for example, can
the expression declare a function) is implementation-defined. See Section 16.4.1,
“p:variable”.

32. The precise details about what XPath expressions are allowed (for example, can
the expression declare a function) is implementation-defined. See Section 16.4.2,
“p:option”.

33. When a declared step is evaluated directly by the XProc processor (as opposed to
occurring as an atomic step in some container), how the input and output ports
are connected to documents is implementation-defined. See Section 16.5,
“p:declare-step”.

34. If no type is specified, the way that the processor determines the type of the
library is implementation-defined. See Section 16.8, “p:import-functions”.

35. Whether or not a processor can import functions, and if it can, what kinds of
function libraries it can import from is implementation-defined. See Section 16.8,
“p:import-functions”.

159

A.1. Implementation-defined features

36. An implementation may support encodings other than base64, but these
encodings and their names are implementation-defined. See Section 16.10,
“p:inline”.

37. How a processor interprets other media types is implementation-defined. See
Section 16.10.4, “Other inline content”.

38. It is implementation-defined whether additional information items and
properties, particularly those made available in the PSVI, are preserved between
steps. See Section A.3, “Infoset Conformance”.

39. The version of Unicode supported is implementation-defined, but it is
recommended that the most recent version of Unicode be used. See Section B.1,
“Processor XPath Context”.

40. The context item used for binary documents is implementation-defined. See
Section B.1, “Processor XPath Context”.

41. The point in time returned as the current dateTime is implementation-defined.
See Section B.1, “Processor XPath Context”.

42. The implicit timezone is implementation-defined. See Section B.1, “Processor
XPath Context”.

43. The default language is implementation-defined. See Section B.1, “Processor
XPath Context”.

44. The default calendar is implementation-defined. See Section B.1, “Processor
XPath Context”.

45. The default place is implementation-defined. See Section B.1, “Processor XPath
Context”.

46. The list of available environment variables is implementation-defined. See
Section B.1, “Processor XPath Context”.

47. The implicit timezone is implementation-defined. See Section B.2, “Step XPath
Context”.

48. The default language is implementation-defined. See Section B.2, “Step XPath
Context”.

49. The default calendar is implementation-defined. See Section B.2, “Step XPath
Context”.

160

A.1. Implementation-defined features

50. The default place is implementation-defined. See Section B.2, “Step XPath
Context”.

51. The list of available environment variables is implementation-defined. See
Section B.2, “Step XPath Context”.

A.2. Implementation-dependent features
The following features are implementation-dependent:

1. The evaluation order of steps not connected to one another is implementation-
dependent. See Section 2, “Pipeline Concepts”.

2. The underlying representations of other kinds of documents are
implementation-dependent. See Section 3.2.5, “Other documents”.

3. Outside of a try/catch, the disposition of error messages is implementation-
dependent See Section 4, “Inputs and Outputs”.

4. Resolving a URI locally may involve resolvers of various sorts and possibly
appeal to implementation-dependent mechanisms such as catalog files. See
Section 4.1, “External Documents”.

5. Whether (and when and how) or not the intermediate results that pass between
steps are ever written to a filesystem is implementation-dependent. See
Section 4.1, “External Documents”.

6. Which steps are forbidden, what privileges are needed to access resources, and
under what circumstances these security constraints apply is implementation-
dependent. See Section 12, “Security Considerations”.

7. The error codes that appear in cause are implementation-dependent. See
Section 15.7.3.2, “c:error”.

8. It is implementation-dependent whether or not atomic steps can be defined
through some other means. See Section 15.8, “Atomic Steps”.

9. Whether or not an implementation allows users to provide their own external
steps is implementation-dependent. See Section 16.5, “p:declare-step”.

10. Implementations may use extension attributes to provide implementation-
dependent information about a declared step. See Section 16.5.2, “Declaring
external steps”.

161

A.2. Implementation-dependent features

11. The detection of dynamic errors is somewhat implementation-dependent
because the order of step execution may vary. See Section 17.2, “Dynamic
Errors”.

12. The set of available documents (those that may be retrieved with a URI) is
implementation-dependent. See Section B.1, “Processor XPath Context”.

13. The set of available text resources (those that may be retrieved with a URI) is
implementation-dependent. See Section B.1, “Processor XPath Context”.

14. The set of available collections is implementation-dependent. See Section B.1,
“Processor XPath Context”.

15. The set of available URI collections is implementation-dependent. See
Section B.1, “Processor XPath Context”.

16. The default URI collection is implementation-dependent. See Section B.1,
“Processor XPath Context”.

17. The set of available documents (those that may be retrieved with a URI) is
implementation-dependent. See Section B.2, “Step XPath Context”.

18. The set of available text resources (those that may be retrieved with a URI) is
implementation-dependent. See Section B.2, “Step XPath Context”.

19. The set of available URI collections is implementation-dependent. See
Section B.2, “Step XPath Context”.

20. The default URI collection is implementation-dependent. See Section B.2, “Step
XPath Context”.

A.3. Infoset Conformance
This specification conforms to the XML Information Set [Infoset]. The information
corresponding to the following information items and properties must be available to
the processor for the documents that flow through the pipeline.

• The Document Information Item with [base URI] and [children]
properties.

162

A.3. Infoset Conformance

• Element Information Items with [base URI], [children], [attributes],
[in-scope namespaces], [prefix], [local name], [namespace name],
[parent] properties.

• Attribute Information Items with [namespace name], [prefix],
[local name], [normalized value], [attribute type], and
[owner element] properties.

• Character Information Items with [character code], [parent], and,
optionally, [element content whitespace] properties.

• Processing Instruction Information Items with [base URI], [target],
[content] and [parent] properties.

• Comment Information Items with [content] and [parent] properties.

• Namespace Information Items with [prefix] and [namespace name]
properties.

It is implementation-defined whether additional information items and properties,
particularly those made available in the PSVI, are preserved between steps.

B. XPath contexts in XProc
Two kinds of XPath context are relevant in XProc: the context of the pipeline itself
(Section B.1, “Processor XPath Context”) and the context within steps (Section B.2,
“Step XPath Context”).

B.1. Processor XPath Context
When the XProc processor evaluates an XPath expression using XPath, unless
otherwise indicated by a particular step, it does so with the following static context:

XPath 1.0 compatibility mode
False

Statically known namespaces
The namespace declarations in-scope for the containing element.

163

B. XPath contexts in XProc

Default element/type namespace
The null namespace.

Default function namespace
The default function namespace is
http://www.w3.org/2005/xpath-functions, as defined in [XPath and XQuery
Functions and Operators 3.1]. Function names that do not contain a colon always
refer to the default function namespace, any in-scope binding for the default
namespace does not apply. This specification does not provide a mechanism to
override the default function namespace.

In-scope schema definitions
A basic XPath 3.1 XProc processor includes the following named type definitions
in its in-scope schema definitions:

• All the primitive atomic types defined in [W3C XML Schema: Part 2], with
the exception of xs:NOTATION. That is: xs:anyAtomicType,
xs:anySimpleType, xs:anyURI, xs:base64Binary, xs:boolean, xs:date,
xs:dateTime, xs:decimal, xs:double, xs:duration, xs:float, xs:gDay,
xs:gMonth, xs:gMonthDay, xs:gYear, xs:gYearMonth, xs:hexBinary,
xs:QName, xs:string, and xs:time.

• The derived atomic type xs:integer defined in [W3C XML Schema: Part
2].

• The types xs:anyType, xs:yearMonthDuration, xs:dayTimeDuration,
xs:untyped, and xs:untypedAtomic defined in [XQuery and XPath Data
Model 3.1].

In-scope variables
Variables and options are lexically scoped. The union of the options and the
variables that are “visible” from the step’s lexical position are available as
variable bindings to the XPath processor. Variables and options can shadow each
other, only the lexically most recent bindings are visible.

Context item static type
Document.

164

B.1. Processor XPath Context

Function signatures
The signatures of the [XPath and XQuery Functions and Operators 3.1] in
namespaces http://www.w3.org/2005/xpath-functions,
http://www.w3.org/2005/xpath-functions/math,
http://www.w3.org/2005/xpath-functions/map and
http://www.w3.org/2005/xpath-functions/array. Additionally the function
signatures defined in Section 8, “XPath Extension Functions”.

Statically known collations
Implementation-defined but must include the Unicode code point collation. The
version of Unicode supported is implementation-defined, but it is recommended
that the most recent version of Unicode be used.

Default collation
Unicode code point collation.

Static base URI
The base URI of the element on which the expression occurs.

Statically known documents
None.

Statically known collections
None.

Statically known default collection type
item()*

Statically known decimal formats
None.

And the following dynamic context:

context item
The context item. The context item is either specified with a connection or is taken
from the default readable port. If the explicit connection or the default readable
port provides no or more than one document then the context item is undefined.
It is a dynamic error (err:XD0001) if the XPath expression makes use of the
context item, but the context item is undefined.

165

B.1. Processor XPath Context

The context item used for an XML, text, or JSON document is the XDM
representation of that item. The context item used for binary documents is
implementation-defined.

If there is no explicit connection and there is no default readable port then the
context item is undefined.

context position and context size
If the context item is defined, the context position and context size are both “1”.
It is a dynamic error (err:XD0001) to refer to the context position or size if the
context item is undefined.

Variable values
The union of the in-scope options and variables are available as variable
bindings to the XPath processor.

Named functions
The [XPath and XQuery Functions and Operators 3.1] and the Section 8, “XPath
Extension Functions”.

Current dateTime
The point in time returned as the current dateTime is implementation-defined.

Implicit timezone
The implicit timezone is implementation-defined.

Default language
The default language is implementation-defined.

Default calendar
The default calendar is implementation-defined.

Default place
The default place is implementation-defined.

Available documents
The set of available documents (those that may be retrieved with a URI) is
implementation-dependent.

Available text resources
The set of available text resources (those that may be retrieved with a URI) is
implementation-dependent.

166

B.1. Processor XPath Context

Available collections
The set of available collections is implementation-dependent.

Default collection
None.

Available URI collections
The set of available URI collections is implementation-dependent.

Default URI collection
The default URI collection is implementation-dependent.

Environment variables
The list of available environment variables is implementation-defined.

B.2. Step XPath Context
When a step evaluates an XPath expression using XPath 3.1, unless otherwise
indicated by a particular step, it does so with the following static context:

XPath 1.0 compatibility mode
False

Statically known namespaces
The namespace declarations in-scope for the containing element.

Default element/type namespace
The null namespace.

Default function namespace
The default function namespace is
http://www.w3.org/2005/xpath-functions, as defined in [XPath and XQuery
Functions and Operators 3.1]. Function names that do not contain a colon always
refer to the default function namespace, any in-scope binding for the default
namespace does not apply. This specification does not provide a mechanism to
override the default function namespace.

In-scope schema definitions
The same as the Section B.1, “Processor XPath Context”.

167

B.2. Step XPath Context

In-scope variables
None, unless otherwise specified by the step.

Context item static type
Document.

Function signatures
The signatures of the [XPath and XQuery Functions and Operators 3.1] in
namespaces http://www.w3.org/2005/xpath-functions,
http://www.w3.org/2005/xpath-functions/math,
http://www.w3.org/2005/xpath-functions/map and
http://www.w3.org/2005/xpath-functions/array.

Statically known collations
Implementation-defined but must include the Unicode code point collation.

Default collation
Unicode code point collation.

Static base URI
The base URI of the element on which the expression occurs.

Statically known documents
None.

Statically known collections
None.

Statically known default collection type
item()*

Statically known decimal formats
None.

And the following initial dynamic context:

context item
The document node of the document that appears on the primary input of the
step, unless otherwise specified by the step.

context position and context size
The context position and context size are both “1”, unless otherwise specified by
the step.

168

B.2. Step XPath Context

Variable values
None, unless otherwise specified by the step.

Named functions
The [XPath and XQuery Functions and Operators 3.1].

Current dateTime
An implementation-defined point in time.

Implicit timezone
The implicit timezone is implementation-defined.

Default language
The default language is implementation-defined.

Default calendar
The default calendar is implementation-defined.

Default place
The default place is implementation-defined.

Available documents
The set of available documents (those that may be retrieved with a URI) is
implementation-dependent.

Available text resources
The set of available text resources (those that may be retrieved with a URI) is
implementation-dependent.

Available collections
None.

Default collection
None.

Available URI collections
The set of available URI collections is implementation-dependent.

Default URI collection
The default URI collection is implementation-dependent.

Environment variables
The list of available environment variables is implementation-defined.

169

B.2. Step XPath Context

Note
Some steps may also provide for implementation-defined or
implementation-dependent amendments to the contexts. Those
amendments are in addition to any specified by XProc.

C. References

C.1. Normative References
[Steps 3.0] XProc 3.0: Standard Step Library. Norman Walsh, Achim Berndzen, Gerrit
Imsieke and Erik Siegel, editors.

[Infoset] XML Information Set (Second Edition). John Cowan, Richard Tobin, editors.
W3C Working Group Note 04 February 2004.

[XML 1.0] Extensible Markup Language (XML) 1.0 (Fifth Edition). Tim Bray, Jean Paoli,
C. M. Sperberg-McQueen, et. al. editors. W3C Recommendation 26 November 2008.

[Namespaces 1.0] Namespaces in XML 1.0 (Third Edition). Tim Bray, Dave Hollander,
Andrew Layman, et. al., editors. W3C Recommendation 8 December 2009.

[XML 1.1] Extensible Markup Language (XML) 1.1 (Second Edition). Tim Bray, Jean Paoli,
C. M. Sperberg-McQueen, et. al. editors. W3C Recommendation 16 August 2006.

[Namespaces 1.1] Namespaces in XML 1.1 (Second Edition). Tim Bray, Dave Hollander,
Andrew Layman, et. al., editors. W3C Recommendation 16 August 2006.

[XPath 3.1] XML Path Language (XPath) 3.1. Jonathan Robie, Michael Dyck, Josh
Spiegel, editors. W3C Recommendation. 21 March 2017.

[XQuery and XPath Data Model 3.1] XQuery and XPath Data Model 3.1. Norman
Walsh, John Snelson, and Andrew Coleman, editors. W3C Recommendation. 21
March 2017.

170

C. References

https://spec.xproc.org/3.0/steps/
https://www.w3.org/TR/xml-infoset/
https://www.w3.org/TR/REC-xml/
https://www.w3.org/TR/REC-xml-names/
https://www.w3.org/TR/xml11/
https://www.w3.org/TR/xml-names11/
https://www.w3.org/TR/xpath31/
https://www.w3.org/TR/xpath-datamodel-31/

[Serialization] XSLT and XQuery Serialization 3.1. Andrew Coleman and C. M.
Sperberg-McQueen, editors. W3C Recommendation. 21 March 2017.

[XPath and XQuery Functions and Operators 3.1] XPath and XQuery Functions and
Operators 3.1. Michael Kay, editor. W3C Recommendation. 21 March 2017

[XSLT 3.0] XSL Transformations (XSLT) Version 3.0. Michael Kay, editor. W3C
Recommendation. 8 June 2017.

[XQuery 1.0] XQuery 1.0: An XML Query Language. Scott Boag, Don Chamberlin,
Mary Fernández, et. al., editors. W3C Recommendation. 23 January 2007.

[W3C XML Schema: Part 1] XML Schema Part 1: Structures Second Edition. Henry S.
Thompson, David Beech, Murray Maloney, et. al., editors. World Wide Web
Consortium, 28 October 2004.

[W3C XML Schema: Part 2] XML Schema Part 2: Datatypes Second Edition. Paul V.
Biron and Ashok Malhotra, editors. World Wide Web Consortium, 28 October 2004.

[xml:id] xml:id Version 1.0. Jonathan Marsh, Daniel Veillard, and Norman Walsh,
editors. W3C Recommendation. 9 September 2005.

[XML Base] XML Base (Second Edition). Jonathan Marsh and Richard Tobin, editors.
W3C Recommendation. 28 January 2009.

[RFC 2119] Key words for use in RFCs to Indicate Requirement Levels. S. Bradner.
Network Working Group, IETF, Mar 1997.

[RFC 2396] Uniform Resource Identifiers (URI): Generic Syntax. T. Berners-Lee, R.
Fielding, and L. Masinter. Network Working Group, IETF, Aug 1998.

[RFC 3023] RFC 3023: XML Media Types. M. Murata, S. St. Laurent, and D. Kohn,
editors. Internet Engineering Task Force. January, 2001.

[RFC 2046] RFC 2046: Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types. N. Freed, N. Borenstein, editors. Internet Engineering Task Force. November,
1996.

[RFC 3986] RFC 3986: Uniform Resource Identifier (URI): General Syntax. T. Berners-Lee,
R. Fielding, and L. Masinter, editors. Internet Engineering Task Force. January, 2005.

171

C.1. Normative References

https://www.w3.org/TR/xslt-xquery-serialization-31/
https://www.w3.org/TR/xpath-functions-31/
https://www.w3.org/TR/xpath-functions-31/
https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xquery/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xml-id/
https://www.w3.org/TR/xmlbase/
https://doi.org/10.17487/RFC2119
https://doi.org/10.17487/RFC2396
https://doi.org/10.17487/RFC3023
https://doi.org/10.17487/RFC2046
https://doi.org/10.17487/RFC2046
https://doi.org/10.17487/RFC3986

D. Glossary
HTML media type

The “text/html” and “application/xhtml+xml” media types are HTML media
types.

JSON media type
The “application/json” media type and all media types of the form
“application/something+json” are JSON media types.

Namespaces in XML
Unless otherwise noted, the term Namespaces in XML refers equally to
[Namespaces 1.0] and [Namespaces 1.1].

XML
XProc is intended to work equally well with [XML 1.0] and [XML 1.1]. Unless
otherwise noted, the term “XML” refers equally to both versions.

XML media type
The “application/xml” and “text/xml” media types and all media types of
the form “something/something+xml” (except for “application/xhtml+xml”
which is explicitly an HTML media type) are XML media types.

ancestors
The ancestors of a step, if it has any, are its container and the ancestors of its
container.

anonymous input
The compound steps p:for-each and p:viewport each declare a single primary
input without a port name. Such an input is called an anonymous input.

atomic step
An atomic step is a step that does not contain a subpipline when it is invoked.

attribute value template
In an attribute that is designated as an attribute value template, an expression can
be used by surrounding the expression with curly brackets ({}), following the
general rules for value templates

bag-merger
The bag-merger of two or more bags (where a bag is an unordered list or,
equivalently, something like a set except that it may contain duplicates) is a bag

172

D. Glossary

constructed by starting with an empty bag and adding each member of each of
the input bags in turn to it. It follows that the cardinality of the result is the sum
of the cardinality of all the input bags.

by source
A document is specified by source if it references a specific port on another step.

by URI
A document is specified by URI if it is referenced with a URI.

compound step
A compound step is a step that contains one or more subpipelines.

connection
A connection associates an input or output port with some data source.

contained steps
The steps that occur directly within a container are called that step’s contained
steps. In other words, “container” and “contained steps” are inverse
relationships.

container
A container is either a compound step or one of the non-step wrapper elements in
a compound step that contains several subpipelines.

declared inputs
The input ports declared on a step are its declared inputs.

declared outputs
The output ports declared on a step are its declared outputs.

default readable port
The default readable port, which may be undefined, is a specific step name/port
name pair from the set of readable ports.

document
A document is a representation and its document properties.

document properties
The document properties are key/value pairs; they are exposed to the XProc
pipeline as a map (map(xs:QName, item()*)).

173

D. Glossary

dynamic error
A dynamic error is one which occurs while a pipeline is being evaluated (and
cannot be detected before evaluation begins).

dynamic evaluation
Dynamic evaluation consists of tasks which, in general, cannot be performed out
until a source document is available.

effectively excluded
If the effective boolean value of the [p:]use-when expression is false, then the
element and all of its descendants are effectively excluded from the pipeline
document.

empty environment
The empty environment contains no readable ports, an undefined default readable
port, and no in-scope bindings.

empty sequence
An empty sequence of documents is specified with the p:empty element.

environment
The environment is a context-dependent collection of information available
within subpipelines.

extension attribute
An element from the XProc namespace may have any attribute not from the
XProc namespace, provided that the expanded-QName of the attribute has a
non-null namespace URI. Such an attribute is called an extension attribute.

external step
An external step is one supported by the implementation, but which has no
exposed subpipeline.

implementation-defined
An implementation-defined feature is one where the implementation has discretion
in how it is performed. Conformant implementations must document how
implementation-defined features are performed.

implementation-dependent
An implementation-dependent feature is one where the implementation has
discretion in how it is performed. Implementations are not required to document
or explain how implementation-dependent features are performed.

174

D. Glossary

in-scope bindings
The in-scope bindings are a set of name-value pairs, based on option and variable
bindings.

inherited environment
The inherited environment of a contained step is an environment that is the same as
the environment of its container with the standard modifications.

initial environment
An initial environment is a connection for each of the readable ports and a set of
option bindings used to construct the initial in-scope bindings.

inline document
An inline document is specified directly in the body of the element to which it
connects.

last step
The last step in a subpipeline is its last step in document order.

map attribute
A map attribute is an option’s syntactic shortcut attribute for which the option’s
sequence type is a map or array.

matches
A step matches its signature if and only if it specifies an input for each declared
input, it specifies no inputs that are not declared, it specifies an option for each
option that is declared to be required, and it specifies no options that are not
declared.

namespace fixup
To produce a serializable XML document, the XProc processor must sometimes
add additional namespace nodes, perhaps even renaming prefixes, to satisfy the
constraints of Namespaces in XML. This process is referred to as namespace fixup.

option
An option is a name/value pair. The name must be an expanded name. The value
may be any XPath data model value.

pipeline
A pipeline is a set of connected steps, with outputs of one step flowing into
inputs of another.

175

D. Glossary

http://www.w3.org/TR/REC-xml-names/#dt-expname

primary input port
If a step has an input port which is explicitly marked “primary='true'”, or if it
has exactly one document input port and that port is not explicitly marked
“primary='false'”, then that input port is the primary input port of the step.

primary output port
If a step has an output port which is explicitly marked “primary='true'”, or if
it has exactly one document output port and that port is not explicitly marked
“primary='false'”, then that output port is the primary output port of the step.

prologue
The prologue consists of the p:input, p:output, and p:option elements.

readable ports
The readable ports are a set of step name/port name pairs.

representation
A representation is a data structure used by an XProc processor to refer to the
actual document content.

selection pattern
A selection pattern uses a subset of the syntax for path expressions, and is defined
to match a node if the corresponding path expression would select the node. It is
defined as in the XSLT 3.0 specification.

shadow
We say that a variable shadows another variable (or option) if it has the same
name and appears later in the same lexical scope.

signature
The signature of a step is the set of inputs, outputs, and options that it is declared
to accept.

static analysis
Static analysis consists of those tasks that can be performed by inspection of the
pipeline alone, including the binding of static options, computation of
serialization properties and document-properties, evaluation of use-when
expressions, performing a static analysis of all XPath expressions, and detecting
static errors.

176

D. Glossary

https://www.w3.org/TR/xslt-30/#dt-selection-pattern

static error
A static error is one which can be detected before pipeline evaluation is even
attempted.

step
A step is the basic computational unit of a pipeline.

step type exports
The step type exports of an XProc element, against the background of a set of URIs
of resources already visited (call this set Visited), are defined by cases.

subpipeline
Sibling steps and variables (and the connections between them) form a
subpipeline.

text media type
Media types of the form “text/something” are text media types with the
exception of “text/xml” which is an XML media type, and “text/html” which
is an HTML media type. Additionally the media types
“application/javascript”, “application/relax-ng-compact-syntax”, and
“application/xquery” are also text media types.

text value template
In a text node that is designated as a text value template, expressions can be used
by surrounding each expression with curly brackets ({}), following the general
rules for value templates.

value template
Collectively, attribute value templates and text value templates are referred to as
value templates.

variable
A variable is a name/value pair. The name must be an expanded name. The
value may be any XPath data model value.

visible
If two names are in the same scope, we say that they are visible to each other.

177

D. Glossary

http://www.w3.org/TR/REC-xml-names/#dt-expname

E. Pipeline Language Summary
This appendix summarizes the XProc pipeline language. Machine readable
descriptions of this language are available in RELAX NG (and the RELAX NG
compact syntax).

<p:for-each
 name? = NCName>
 ((p:with-input? &
 p:output*),
 subpipeline)
</p:for-each>

<p:viewport
 name? = NCName
 match = XSLTSelectionPattern>
 ((p:with-input? &
 p:output?),
 subpipeline)
</p:viewport>

<p:choose
 name? = NCName>
 (p:with-input?,
 ((p:when+,
 p:otherwise?) |
 (p:when*,
 p:otherwise)))
</p:choose>

<p:when
 name? = NCName
 test = XPathExpression
 collection? = boolean>
 (p:with-input?,
 p:output*,
 subpipeline)
</p:when>

178

E. Pipeline Language Summary

<p:otherwise
 name? = NCName>
 (p:output*,
 subpipeline)
</p:otherwise>

<p:if
 name? = NCName
 test = XPathExpression
 collection? = boolean>
 (p:with-input?,
 p:output*,
 subpipeline)
</p:if>

<p:group
 name? = NCName>
 (p:output*,
 subpipeline)
</p:group>

<p:try
 name? = NCName>
 (p:output*,
 subpipeline,
 ((p:catch+,
 p:finally?) |
 (p:catch*,
 p:finally)))
</p:try>

<p:catch
 name? = NCName
 code? = EQNameList>
 (p:output*,
 subpipeline)
</p:catch>

179

E. Pipeline Language Summary

<p:finally
 name? = NCName>
 (p:output*,
 subpipeline)
</p:finally>

<p:atomic-step
 name? = NCName>
 (p:with-input |
 p:with-option)*
</p:atomic-step>

<ext:atomic-step
 name? = NCName>
 (p:with-input |
 p:with-option)*
</ext:atomic-step>

<p:input
 port = NCName
 sequence? = boolean
 primary? = boolean
 select? = XPathExpression
 content-types? = ContentTypes
 href? = { anyURI }
 exclude-inline-prefixes? = ExcludeInlinePrefixes>
 ((p:empty |
 (p:document |
 p:inline)*) |
 anyElement*)
</p:input>

180

E. Pipeline Language Summary

<p:with-input
 port? = NCName
 select? = XPathExpression
 href? = { anyURI }
 pipe? = string
 exclude-inline-prefixes? = ExcludeInlinePrefixes>
 ((p:empty |
 (p:document |
 p:pipe |
 p:inline)*) |
 anyElement*)
</p:with-input>

<p:output
 port? = NCName
 sequence? = boolean
 primary? = boolean
 content-types? = ContentTypes />

<p:output
 port? = NCName
 sequence? = boolean
 primary? = boolean
 content-types? = ContentTypes
 href? = { anyURI }
 pipe? = string
 exclude-inline-prefixes? = ExcludeInlinePrefixes>
 ((p:empty |
 (p:document |
 p:pipe |
 p:inline)*) |
 anyElement*)
</p:output>

181

E. Pipeline Language Summary

<p:output
 port? = NCName
 sequence? = boolean
 primary? = boolean
 content-types? = ContentTypes
 href? = { anyURI }
 pipe? = string
 exclude-inline-prefixes? = ExcludeInlinePrefixes
 serialization? = map(xs:QName,item()*)>
 ((p:empty |
 (p:document |
 p:pipe |
 p:inline)*) |
 anyElement*)
</p:output>

<p:variable
 name = EQName
 as? = XPathSequenceType
 select = XPathExpression
 collection? = boolean
 href? = { anyURI }
 pipe? = string
 exclude-inline-prefixes? = ExcludeInlinePrefixes>
 ((p:empty |
 (p:document |
 p:pipe |
 p:inline)*) |
 anyElement*)
</p:variable>

<p:option
 name = EQName
 as? = XPathSequenceType
 values? = string
 static? = boolean
 required? = boolean
 select? = XPathExpression
 visibility? = private|public />

182

E. Pipeline Language Summary

<p:with-option
 name = EQName
 as? = XPathSequenceType
 select = XPathExpression
 collection? = boolean
 href? = { anyURI }
 pipe? = string
 exclude-inline-prefixes? = ExcludeInlinePrefixes>
 ((p:empty |
 (p:document |
 p:pipe |
 p:inline)*) |
 anyElement*)
</p:with-option>

<p:declare-step
 name? = NCName
 type? = EQName
 psvi-required? = boolean
 xpath-version? = decimal
 exclude-inline-prefixes? = ExcludeInlinePrefixes
 version? = 3.0
 visibility? = private|public>
 (p:import |
 p:import-functions)*,
 (p:input |
 p:output |
 p:option)*,
 p:declare-step*,
 subpipeline?
</p:declare-step>

183

E. Pipeline Language Summary

<p:declare-step
 name? = NCName
 type? = EQName
 psvi-required? = boolean
 xpath-version? = decimal
 exclude-inline-prefixes? = ExcludeInlinePrefixes
 version? = 3.0
 visibility? = private|public>
 (p:input |
 p:output |
 p:option)*
</p:declare-step>

<p:library
 psvi-required? = boolean
 xpath-version? = decimal
 exclude-inline-prefixes? = ExcludeInlinePrefixes
 version? = 3.0>
 (p:import |
 p:import-functions)*,
 p:option*,
 p:declare-step*
</p:library>

<p:import
 href = anyURI />

<p:import-functions
 href = anyURI
 content-type? = ContentType
 namespace? = string />

<p:pipe
 step? = NCName
 port? = NCName />

184

E. Pipeline Language Summary

<p:inline
 exclude-inline-prefixes? = ExcludeInlinePrefixes
 content-type? = string
 document-properties? = map(xs:QName,item()*)
 encoding? = string>
 anyNode*
</p:inline>

<p:document
 href = { anyURI }
 content-type? = string
 document-properties? = map(xs:QName,item()*)
 parameters? = map(xs:QName,item()*) />

<p:empty />

<p:documentation>
 any-well-formed-content*
</p:documentation>

<p:pipeinfo>
 any-well-formed-content*
</p:pipeinfo>

The core steps are also summarized here.

As are the optional steps.

And the step vocabulary elements.

F. List of Error Codes
The following error codes are defined by this specification.

F.1. Static Errors
The following static errors are defined:

185

F. List of Error Codes

Static Errors

err:XS0001
It is a static error if there are any loops in the connections between steps,
variables, and options: no step, variable, or option can be connected to itself nor
can there be any sequence of connections through other steps that leads back to
itself.

See: Connections

err:XS0002
All steps in the same scope must have unique names: it is a static error if two
steps with the same name appear in the same scope.

See: Scoping of step names

err:XS0003
It is a static error if any declared input is not connected.

See: Inputs and Outputs

err:XS0004
It is a static error to declare two or more options on the same step with the same
name.

See: p:option

err:XS0006
It is a static error if the primary output port has no explicit connection and the
last step in the subpipeline does not have a primary output port.

See: p:for-each, p:viewport, Declaring pipelines

err:XS0008
It is a static error if any element in the XProc namespace has attributes not
defined by this specification unless they are extension attributes.

See: Common errors

err:XS0010
It is a static error if a pipeline contains a step whose specified inputs, outputs,
and options do not match the signature for steps of that type.

186

F.1. Static Errors

See: Extension Steps

err:XS0011
It is a static error to identify two ports with the same name on the same step.

See: p:input, p:output

err:XS0014
It is a static error to identify more than one output port as primary.

See: p:output

err:XS0015
It is a static error if a compound step has no contained steps.

See: Common errors

err:XS0017
It is a static error to specify that an option is both required and has a default
value.

See: p:option

err:XS0018
If an option is required, it is a static error to invoke the step without specifying a
value for that option.

See: p:option

err:XS0022
In all cases except when the p:pipe is within an p:output of a compound step, it
is a static error if the port identified by the p:pipe is not in the readable ports of
the step that contains the p:pipe.

See: p:pipe

err:XS0025
It is a static error if the expanded-QName value of the type attribute is in no
namespace or in the XProc namespace.

See: Declaring pipelines

187

F.1. Static Errors

err:XS0027
It is a static error if an option is specified with both the shortcut form and the
long form.

See: Syntactic Shortcut for Option Values

err:XS0028
It is a static error to declare an option or variable in the XProc namespace.

See: p:variable, p:option

err:XS0029
It is a static error to specify a connection for a p:output inside a p:declare-step for
an external step.

See: p:output

err:XS0030
It is a static error to specify that more than one input port is the primary.

See: p:input

err:XS0031
It is a static error to use an option name in p:with-option if the step type being
invoked has not declared an option with that name.

See: p:with-option, Syntactic Shortcut for Option Values

err:XS0032
It is a static error if no connection is provided and the default readable port is
undefined.

See: p:with-input, Connection precedence, Connection precedence

err:XS0036
All the step types in a pipeline or library must have unique names: it is a static
error if any step type name is built-in and/or declared or defined more than
once in the same scope.

See: Scoping of step type names, Handling Circular and Re-entrant Library
Imports (Non-Normative), Handling Circular and Re-entrant Library Imports
(Non-Normative), Handling Circular and Re-entrant Library Imports (Non-
Normative)

188

F.1. Static Errors

err:XS0037
It is a static error if any user extension step or any element in the XProc
namespace other than p:inline directly contains text nodes that do not consist
entirely of whitespace.

See: Common errors

err:XS0038
It is a static error if any required attribute is not provided.

See: Common errors

err:XS0043
It is a static error to specify a port name on p:with-input for p:for-each,
p:viewport, p:choose, p:when, or p:if.

See: p:with-input

err:XS0044
It is a static error if any step contains an atomic step for which there is no visible
declaration.

See: Common errors

err:XS0048
It is a static error to use a declared step as a compound step.

See: Extension Steps

err:XS0052
It is a static error if the URI of a p:import cannot be retrieved or if, once
retrieved, it does not point to a p:library or p:declare-step.

See: p:import

err:XS0053
It is a static error to import a single pipeline if that pipeline does not have a type.

See: p:import

189

F.1. Static Errors

err:XS0057
It is a static error if the exclude-inline-prefixes attribute does not contain a list of
tokens or if any of those tokens (except #all or #default) is not a prefix bound to
a namespace in the in-scope namespaces of the element on which it occurs.

See: Inline XML and HTML content

err:XS0058
It is a static error if the value #default is used within the exclude-inline-prefixes
attribute and there is no default namespace in scope.

See: Inline XML and HTML content

err:XS0059
It is a static error if the pipeline element is not p:declare-step or p:library.

See: Common errors

err:XS0060
It is a static error if the processor encounters an explicit request for a version of
the language other than “3.0”.

See: Versioning Considerations

err:XS0062
It is a static error if a required version attribute is not present.

See: Versioning Considerations, Declaring pipelines

err:XS0063
It is a static error if the value of the version attribute is not a xs:decimal.

See: Versioning Considerations

err:XS0064
It is a static error if the code attribute is missing from any but the last p:catch or
if any error code occurs in more than one code attribute among sibling p:catch
elements.

See: p:catch

err:XS0065
It is a static error if there is no primary input port.

190

F.1. Static Errors

See: p:with-input

err:XS0066
It is a static error if an expression does not have a closing right curly bracket or if
an unescaped right curly bracket occurs outside of an expression.

See: Value Templates

err:XS0067
It is a static error if the step attribute is not specified, and there is no default
readable port. It is a static error if the port attribute is not specified, and the step
identified has no primary output port.

See: p:pipe

err:XS0068
It is a static error if the port attribute is not specified, and the step identified has
no primary output port.

See: p:pipe

err:XS0069
It is a static error if the encoding specified is not supported by the
implementation.

See: p:inline

err:XS0071
All the static options in a pipeline or library must have unique names: it is a
static error if any static option name is declared more than once in the same
scope.

See: Scoping of static option names

err:XS0072
It is a static error if the name of any output port on the p:finally is the same as
the name of any other output port in the p:try or any of its sibling p:catch
elements.

See: p:finally

err:XS0073
It is a static error if any specified name is not the name of an in-scope step.

191

F.1. Static Errors

See: Additional dependent connections

err:XS0074
It is a static error if a p:choose has neither a p:when nor a p:otherwise.

See: p:choose

err:XS0075
It is a static error if a p:try does not have at least one subpipeline step, at least
one of p:catch or p:finally, and at most one p:finally.

See: p:try

err:XS0076
It is a static error if there are any loops in the connections between steps and
variables: no step can refer to a variable if there is any sequence of connections
from that step that leads back to the input that provides the context node for the
expression that defines the value of the variable.

See: p:variable, p:with-option

err:XS0077
It is a static error if the value on an attribute of an XProc element does not satisfy
the type required for that attribute.

See: Common errors

err:XS0078
When the p:pipe is within an p:output of a compound step, it is a static error if
the port identified by the p:pipe is not in the readable ports of the compound
step and is not a readable port of a contained step.

See: p:pipe

err:XS0079
It is a static error if comments, non-whitespace text nodes, or processing
instructions occur as siblings of an element node that would be treated as an
implicit inline.

See: Implicit inlines

192

F.1. Static Errors

err:XS0080
It is a static error to include more than one p:with-option with the same option
name as part of the same step invocation.

See: p:with-option

err:XS0081
If href is specified, it is a static error if any child elements other than
p:documentation and p:pipeinfo are present.

See: p:with-input

err:XS0082
If pipe is specified, it is a static error any child elements other than
p:documentation and p:pipeinfo are present.

See: p:with-input

err:XS0083
It is a static error if the value of the code attribute is not a whitespace separated
list of EQNames.

See: p:catch

err:XS0085
It is a static error if both a href attribute and a pipe attribute are present.

See: p:with-input, p:with-input

err:XS0086
It is a static error to provide more than one p:with-input for the same port.

See: p:with-input

err:XS0087
It is a static error if the name attribute on p:option or p:variable has a prefix
which is not bound to a namespace.

See: p:variable, p:option

err:XS0088
It is a static error if the qualified name of a p:variable shadows the name of a
static option.

193

F.1. Static Errors

See: p:variable, p:option

err:XS0089
It is a static error if the p:empty binding appears as a sibling of any other
binding, including itself.

See: p:empty

err:XS0090
It is a static error if the value of the pipe attribute contains any tokens not of the
form port-name, port-name@step-name, or @step-name.

See: p:with-input

err:XS0091
It is a static error if an p:option shadows another option declared within the
same p:declare-step.

See: Declaring pipelines

err:XS0092
It is a static error if a p:with-option attempts to change the value of an option
that is declared static.

See: p:with-option, Syntactic Shortcut for Option Values

err:XS0094
It is a static error if a p:variable does not have a select attribute.

See: p:variable

err:XS0095
It is a static error to specify that an option is both required and static.

See: p:option

err:XS0096
It is a static error if the sequence type is not syntactically valid.

See: Variable and option types

194

F.1. Static Errors

err:XS0097
It is a static error if an attribute in the XProc namespace appears on an element in
the XProc namespace.

See: Common Attributes

err:XS0099
It is a static error if step or port are not valid instances of NCName.

See: p:pipe

err:XS0100
It is a static error if the pipeline document does not conform to the grammar for
pipeline documents.

See: Common errors

err:XS0101
It is a static error if the values list is not an XPath sequence of atomic values.

See: p:option

err:XS0102
It is a static error if alternative subpipelines have different primary output ports.

See: p:choose, p:try

err:XS0103
It is a static error if the URI of a p:import-functions element cannot be retrieved
or if, once retrieved, it points to a library that the processor cannot import.

See: p:import-functions

err:XS0104
It is a static error if the processor cannot load the function library.

See: p:import-functions

err:XS0105
It is a static error if a function imported from a library has the same name and
arity as a function already imported.

See: p:import-functions

195

F.1. Static Errors

err:XS0106
It is a static error if the processor detects that a particular library is unloadable.

See: p:import-functions

err:XS0107
It is a static error in XProc if any XPath expression or the XSLT selection pattern
in option match on p:viewport contains a static error (error in expression syntax,
references to unknown variables or functions, etc.).

See: Initiating a pipeline

err:XS0108
It is a static error if the p:if step does not specify a primary output port.

See: p:if

err:XS0109
It is a static error if options that are the direct children of p:library are not
declared “static”

See: Static Options

err:XS0110
It is a static error if the requested XPath version is less than “3.1”

See: Declaring pipelines, p:library

err:XS0111
It is a static error if an unrecognized content type shortcut is specified.

See: Specifying content types

err:XS0112
It is a static error if p:finally declares a primary output port either explicitly or
implicitly.

See: p:finally

err:XS0113
It is a static error if either [p:]expand-text or [p:]inline-expand-text is to be
interpreted by the processor and it does not have the value “true” or “false”.

196

F.1. Static Errors

See: Expand text attributes

err:XS0114
It is a static error if a port name is specified and the step type being invoked does
not have an input port declared with that name.

See: p:with-input

err:XS0115
It is a static error if two or more elements are contained within a deadlocked
network of [p:]use-when expressions.

See: Conditional Element Exclusion

F.2. Dynamic Errors
The following dynamic errors are defined:

Dynamic Errors

err:XD0001
It is a dynamic error if an XPath expression makes reference to the context item,
size, or position when the context item is undefined.

See: p:choose, p:when, p:if, p:variable, p:option, p:with-option, Processor XPath
Context, Processor XPath Context

err:XD0006
If sequence is not specified, or has the value false, then it is a dynamic error
unless exactly one document appears on the declared port.

See: p:input

err:XD0007
If sequence is not specified on p:output, or has the value false, then it is a
dynamic error if the step does not produce exactly one document on the
declared port.

See: p:output

197

F.2. Dynamic Errors

err:XD0010
It is a dynamic error if the match expression on p:viewport matches an attribute
or a namespace node.

See: p:viewport

err:XD0012
It is a dynamic error if any attempt is made to dereference a URI where the
scheme of the URI reference is not supported.

See: Common errors

err:XD0015
It is a dynamic error if a QName is specified and it cannot be resolved with the
in-scope namespace declarations.

See: System Properties, Step Available

err:XD0016
It is a dynamic error if the select expression on a p:input or p:with-input returns
attribute nodes or function items.

See: p:with-input

err:XD0017
It is a dynamic error if the running pipeline attempts to invoke an external step
which the processor does not know how to perform.

See: Extension Steps, Declaring external steps

err:XD0019
It is a dynamic error if an option declares a list of acceptable values and an
attempt is made to specify a value that is not a member of that list.

See: p:option

err:XD0020
It is a dynamic error if the combination of serialization options specified or
defaulted is not allowed.

See: Serialization parameters

198

F.2. Dynamic Errors

err:XD0021
It is a dynamic error for a pipeline to attempt to access a resource for which it
has insufficient privileges or perform a step which is forbidden.

See: Security Considerations

err:XD0022
It is a dynamic error if a processor that does not support PSVI annotations
attempts to invoke a step which asserts that they are required.

See: PSVIs in XProc

err:XD0028
It is a dynamic error if any attribute value does not satisfy the type required for
that attribute.

See: Common errors

err:XD0030
It is a dynamic error if a step is unable or incapable of performing its function.

See: Common errors

err:XD0036
It is a dynamic error if the supplied or defaulted value of a variable or option
cannot be converted to the required type.

See: Variable and option types

err:XD0038
It is a dynamic error if an input document arrives on a port and it does not
match the allowed content types.

See: Specifying content types

err:XD0039
It is a dynamic error if the encoding attribute is present and content type value
specifies a character set that is not supported by the implementation.

See: p:inline

199

F.2. Dynamic Errors

err:XD0040
It is a dynamic error if the body is not correctly encoded per the value of the
encoding attribute.

See: p:inline

err:XD0042
It is a dynamic error if a document arrives on an output port whose content type
is not accepted by the output port specification.

See: p:output

err:XD0050
It is a dynamic error if the XPath expression in a value template can not be
evaluated.

See: Value Templates

err:XD0051
It is a dynamic error if the XPath expression in an AVT or TVT evaluates to
something to other than a sequence containing atomic values or nodes.

See: Value Templates

err:XD0052
It is a dynamic error if the XPath expression in a TVT evaluates to an attribute
and either the parent is not an element or the attribute has a preceding node that
it not an attribute.

See: Text Value Templates

err:XD0053
It is a dynamic error if a step runs longer than its timeout value.

See: Controlling long running steps

err:XD0054
It is a dynamic error if an encoding is specified and the content type is an XML
media type or an HTML media type.

See: p:inline

200

F.2. Dynamic Errors

err:XD0055
It is a dynamic error if the content type value specifies a character set and the
encoding attribute is absent.

See: p:inline

err:XD0056
It is a dynamic error if an encoding is specified and the content of the p:inline
contains any XML markup.

See: p:inline

err:XD0057
It is a dynamic error if the text content does not conform to the JSON grammar.

See: Inline JSON content

err:XD0061
It is a dynamic error if $key is of type xs:string and cannot be converted into a
xs:QName.

See: Document property, Special rules for casting QNames

err:XD0062
It is a dynamic error if the document-properties map contains a content-type key
and that key has a value that differs from the statically determined content type.

See: p:inline

err:XD0063
It is a dynamic error if the p:inline contains any XML markup and has a content
type that is not an XML media type or an HTML media type.

See: p:inline

err:XD0064
It is a dynamic error if the base URI is not both absolute and valid according to .

See: p:inline, p:document

err:XD0065
It is a dynamic error to refer to the context item, size, or position in a value
template if a sequence of documents appears on the default readable port.

201

F.2. Dynamic Errors

See: Value Templates, p:variable, p:with-option

err:XD0068
It is a dynamic error if the supplied value is not an instance of xs:QName,
xs:anyAtomicType, xs:string or a type derived from xs:string.

See: Special rules for casting QNames

err:XD0069
It is a dynamic error if the string value contains a colon and the designated
prefix is not declared in the in-scope namespaces.

See: Special rules for casting QNames

err:XD0070
It is a dynamic error if a value is assigned to the serialization document property
that cannot be converted into map(xs:QName, item()*) according to the rules in
Implicit Casting.

See: Document Properties

err:XD0072
It is a dynamic error if a document appearing on the input port of p:viewport is
neither an XML document nor an HTML document.

See: p:viewport

err:XD0073
It is a dynamic error if the document returned by applying the subpipeline to the
matched node is not an XML document, an HTML document, or a text
document.

See: p:viewport

err:XD0074
It is a dynamic error if no absolute base URI is supplied to p:urify and none can
be inferred from the current working directory.

See: Analysis

err:XD0075
It is a dynamic error if the relative path has a drive letter and the base URI has a
different drive letter or does not have a drive letter.

202

F.2. Dynamic Errors

See: Analysis

err:XD0076
It is a dynamic error if the relative path has a drive letter and the base URI has
an authority or if the relative path has an authority and the base URI has a drive
letter.

See: Analysis

err:XD0077
It is a dynamic error if the relative path has a scheme that differs from the
scheme of the base URI.

See: Analysis

err:XD0079
It is a dynamic error if a supplied content-type is not a valid media type of the
form “type/subtype+ext” or “type/subtype”.

See: Specifying content types

err:XD0080
It is a dynamic error if the basedir has a non-hierarchical scheme.

See: Analysis

F.3. Step Errors
The following dynamic errors can be raised by steps in this specification:

Step Errors

err:XC0023
It is a dynamic error if a select expression or selection pattern returns a node
type that is not allowed by the step.

See: Common errors

203

F.3. Step Errors

G. Guidance on Namespace Fixup (Non-Normative)
An XProc processor may find it necessary to add missing namespace declarations to
ensure that a document can be serialized. While this process is implementation
defined, the purpose of this appendix is to provide guidance as to what an
implementation might do to either prevent such situations or fix them as before
serialization.

When a namespace binding is generated, the prefix associated with the QName of
the element or attribute in question should be used. From an Infoset perspective, this
is accomplished by setting the [prefix] on the element or attribute. Then when an
implementation needs to add a namespace binding, it can reuse that prefix if
possible. If reusing the prefix is not possible, the implementation must generate a
new prefix that is unique to the in-scope namespace of the element or owner element
of the attribute.

An implementation can avoid namespace fixup by making sure that the standard
step library does not output documents that require fixup. The following list contains
suggestions as to how to accomplish this within the steps:

1. Any step that outputs an element in the step vocabulary namespace
http://www.w3.org/ns/xproc-step must ensure that namespace is declared.
An implementation should generate a namespace binding using the prefix “c”.

2. When attributes are added by p:add-attribute or p:set-attributes, the step
must ensure the namespace of the attributes added are declared. If the prefix
used by the QName is not in the in-scope namespaces of the element on which
the attribute was added, the step must add a namespace declaration of the prefix
to the in-scope namespaces. If the prefix is amongst the in-scope namespace and
is not bound to the same namespace name, a new prefix and namespace binding
must be added. When a new prefix is generated, the prefix associated with the
attribute should be changed to reflect that generated prefix value.

3. When an element is renamed by p:rename, the step must ensure the namespace
of the element is declared. If the prefix used by the QName is not in the in-scope
namespaces of the element being renamed, the step must add a namespace
declaration of the prefix to the in-scope namespaces. If the prefix is amongst the
in-scope namespace and is not bound to the same namespace name, a new prefix

204

G. Guidance on Namespace Fixup (Non-Normative)

and namespace binding must be added. When a new prefix is generated, the
prefix associated with the element should be changed to reflect that generated
prefix value.

If the element does not have a namespace name and there is a default
namespace, the default namespace must be undeclared. For each of the child
elements, the original default namespace declaration must be preserved by
adding a default namespace declaration unless the child element has a different
default namespace.

4. When an attribute is renamed by p:rename, the step must ensure the namespace
of the renamed attribute is declared. If the prefix used by the QName is not in
the in-scope namespaces of the element on which the attribute was added, the
step must add a namespace declaration of the prefix to the in-scope namespaces.
If the prefix is amongst the in-scope namespace and is not bound to the same
namespace name, a new prefix and namespace binding must be added. When a
new prefix is generated, the prefix associated with the attribute should be
changed to reflect that generated prefix value.

5. When an element wraps content via p:wrap, there may be in-scope namespaces
coming from ancestor elements of the new wrapper element. The step must
ensure the namespace of the element is declared properly. By default, the
wrapper element will inherit the in-scope namespaces of the parent element if
one exists. As such, there may be a existing namespace declaration or default
namespace.

If the prefix used by the QName is not in the in-scope namespaces of the
wrapper element, the step must add a namespace declaration of the prefix to the
in-scope namespaces. If the prefix is amongst the in-scope namespace and is not
bound to the same namespace name, a new prefix and namespace binding must
be added. When a new prefix is generated, the prefix associated with the
wrapper element should be changed to reflect that generated prefix value.

If the element does not have a namespace name and there is a default
namespace, the default namespace must be undeclared. For each of the child
elements, the original default namespace declaration must be preserved by
adding a default namespace declaration unless the child element has a different
default namespace.

205

G. Guidance on Namespace Fixup (Non-Normative)

6. When the wrapper element is added for p:wrap-sequence or p:pack, the prefix
used by the QName must be added to the in-scope namespaces.

7. When a element is removed via p:unwrap, an in-scope namespaces that are
declared on the element must be copied to any child element except when the
child element declares the same prefix or declares a new default namespace.

8. In the output from p:xslt, if an element was generated from the xsl:element or
an attribute from xsl:attribute, the step must guarantee that an namespace
declaration exists for the namespace name used. Depending on the XSLT
implementation, the namespace declaration for the namespace name of the
element or attribute may not be declared. It may also be the case that the original
prefix is available. If the original prefix is available, the step should attempt to
re-use that prefix. Otherwise, it must generate a prefix for a namespace binding
and change the prefix associated the element or attribute.

H. Handling Circular and Re-entrant Library Imports (Non-
Normative)
When handling imports, an implementation needs to be able to detect the following
situations, and distinguish them from cases where multiple import chains produce
genuinely conflicting step definitions:

1. Circular imports: A imports B, B imports A.

2. Re-entrant imports: A imports B and C, B imports D, C imports D.

One way to achieve this is as follows:

[Definition: The step type exports of an XProc element, against the background of a set
of URIs of resources already visited (call this set Visited), are defined by cases.]

The step type exports of an XProc element are as follows:

p:declare-step
A singleton bag containing the type of the element

p:library
The bag-merger of the step type exports of all the element’s children

206

H. Handling Circular and Re-entrant Library Imports (Non-Normative)

p:import
Let RU be the actual resolved URI of the resource identified by the href of the
element. If RU is a member of Visited, then an empty bag, otherwise update
Visited by adding RU to it, and return the step type exports of the document
element of the retrieved representation

all other elements
An empty bag

The changes to Visited mandated by the p:import case above are persistent, not
scoped. That is, not only the recursive processing of the imported resource but also
subsequent processing of siblings and ancestors must be against the background of
the updated value. In practice this means either using a side-effected global variable,
or not only passing Visited as an argument to any recursive or iterative processing,
but also returning its updated value for subsequent use, along with the bag of step
types.

Given a pipeline library document with actual resolved URI DU, it is a static
error (err:XS0036) if the step type exports of the document element of the retrieved
representation, against the background of a singleton set containing DU as the initial
Visited set, contains any duplicates.

Given a top-level pipeline document with actual resolved URI DU, it is a static
error (err:XS0036) if the bag-merger of the step type exports of the document element
of the retrieved representation with the step type exports of its children, against the
background of a singleton set containing DU as the initial Visited set, contains any
duplicates.

Given a non-top-level p:declare-step element, it is a static error (err:XS0036) if the
bag-merger of the step type exports of its parent with the step type exports of its children,
against the background of a copy of the Visited set of its parent as the initial Visited
set, contains any duplicates.

The phrase "a copy of the Visited set" in the preceding paragraph is meant to indicate
that checking of non-top-level p:declare-step elements does not have a persistent
impact on the checking of its parent. The contrast is that whereas changes to Visited
pass both up and down through p:import, they pass only down through p:declare-step.

207

H. Handling Circular and Re-entrant Library Imports (Non-Normative)

[Definition: The bag-merger of two or more bags (where a bag is an unordered list or,
equivalently, something like a set except that it may contain duplicates) is a bag
constructed by starting with an empty bag and adding each member of each of the
input bags in turn to it. It follows that the cardinality of the result is the sum of the
cardinality of all the input bags.]

I. Sequential steps, parallelism, and side-effects
XProc imposes as few constraints on the order in which steps must be evaluated as
possible and almost no constraints on parallel execution.

In the simple, and we believe overwhelmingly common case, inputs flow into the
pipeline, through the pipeline from one step to the next, and results are produced at
the end. The order of the steps is constrained by the input/output connections
between them. Implementations are free to execute them in a purely sequential
fashion or in parallel, as they see fit. The results are the same in either case.

This is not true for pipelines which rely on side effects, such as the state of the
filesystem or the state of the web. Consider the following pipeline:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 version="3.0">
<p:input port="source"/>
<p:output port="result"/>

 <p:xslt name="generate-stylesheet">
 <p:with-input port="source" href="someURI"/>
 <p:with-input port="stylesheet" href="someOtherURI"/>
 </p:xslt>

 <p:store name="save-xslt" href="gen-style.xsl"/>

 <p:xslt name="style">
 <p:with-input port="source">
 <p:pipe step="main" port="source"/>
 </p:with-input>
 <p:with-input port="stylesheet" href="gen-style.xsl"/>
 </p:xslt>
</p:declare-step>

208

I. Sequential steps, parallelism, and side-effects

There’s no guarantee that “style” step will execute after the “save-xslt” step. In this
case, the solution is straightforward. Even if you need the saved stylesheet, you don't
need to rely on it in your pipeline:

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 name="main" version="3.0">
<p:input port="source"/>
<p:output port="result"/>

 <p:xslt name="generate-stylesheet">
 <p:with-input port="source" href="someURI"/>
 <p:with-input port="stylesheet" href="someOtherURI"/>
 </p:xslt>

 <p:store name="save-xslt" href="gen-style.xsl"/>

 <p:xslt name="style">
 <p:with-input port="source">
 <p:pipe step="main" port="source"/>
 </p:with-input>
 <p:with-input port="stylesheet">
 <p:pipe step="generate-stylesheet" port="result"/>
 </p:with-input>
 </p:xslt>
</p:declare-step>

Now the result is independent of the implementation strategy.

Implementations are free to invent additional control structures using p:pipeinfo
and extension attributes to provide greater control over parallelism in their
implementations.

J. The application/xproc+xml media type
This appendix registers a new MIME media type, “application/xproc+xml”.

209

J. The application/xproc+xml media type

J.1. Registration of MIME media type application/
xproc+xml
MIME media type name:

application

MIME subtype name:
xproc+xml

Required parameters:
None.

Optional parameters:

charset
This parameter has identical semantics to the charset parameter of the
application/xml media type as specified in [RFC 3023] or its successors.

Encoding considerations:
By virtue of XProc content being XML, it has the same considerations when sent
as “application/xproc+xml” as does XML. See [RFC 3023], Section 3.2.

Security considerations:
Several XProc elements may refer to arbitrary URIs. In this case, the security
issues of [RFC 2396], section 7, should be considered.

In addition, because of the extensibility features of XProc, it is possible that
“application/xproc+xml” may describe content that has security implications
beyond those described here. However, only in the case where the processor
recognizes and processes the additional content, or where further processing of
that content is dispatched to other processors, would security issues potentially
arise. And in that case, they would fall outside the domain of this registration
document.

Interoperability considerations:
This specification describes processing semantics that dictate behavior that must
be followed when dealing with, among other things, unrecognized elements.

Because XProc is extensible, conformant "application/xproc+xml" processors can
expect that content received is well-formed XML, but it cannot be guaranteed

210

J.1. Registration of MIME media type application/xproc+xml

that the content is valid XProc or that the processor will recognize all of the
elements and attributes in the document.

Published specification:
This media type registration is for XProc documents as described by this
specification which is located at http://www.w3.org/TR/xproc/.

Applications which use this media type:
There is no experimental, vendor specific, or personal tree predecessor to
“application/xproc+xml”, reflecting the fact that no applications currently
recognize it. This new type is being registered in order to allow for the
deployment of XProc on the World Wide Web, as a first class XML application.

Additional information:

Magic number(s):
There is no single initial octet sequence that is always present in XProc
documents.

File extension(s):
XProc documents are most often identified with the extension “.xpl”.

Macintosh File Type Code(s):
TEXT

Person & email address to contact for further information:
Norman Walsh, <Norman.Walsh@MarkLogic.com>.

Intended usage:
COMMON

Author/Change controller:
The XProc specification is a work product of the World Wide Web Consortium’s
XML Processing Model Working Group. The W3C has change control over these
specifications.

J.2. Fragment Identifiers
For documents labeled as “application/xproc+xml”, the fragment identifier
notation is exactly that for “application/xml”, as specified in [RFC 3023] or its
successors.

211

J.2. Fragment Identifiers

http://www.w3.org/TR/xproc/
mailto:Norman.Walsh@MarkLogic.com

K. Ancillary files
This specification includes by reference a number of ancillary files.

xproc30.rnc, xproc30.rng
A RELAX NG Schema for XProc 3.0 pipelines, in compact or XML form.

xproc10.rnc, xproc10.rng
A RELAX NG Schema for XProc 1.0 pipelines, in compact or XML form.

xproc.rnc, xproc.rng
A RELAX NG Schema for XProc pipelines, in compact or XML form. It will
validate either XProc 1.0 pipelines or XProc 3.0 pipelines, depending on the
value of the version attribute.

In order to use this schema, you must also download the 1.0 and 3.0 schemas;
they are included into this one.

library.xpl
An XProc pipeline library that declares all of the standard built-in steps.

L. Credits
This document is derived from XProc: An XML Pipeline Language published by the
W3C. It was developed by the XML Processing Model Working Group and edited by
Norman Walsh, Alex Miłowski, and Henry Thompson.

The editors of this specification extend their gratitude to everyone who contributed
to this document and all of the versions that came before it.

M. Change Log
This list contains the non-editorial changes made after the August 2020 “last call”
draft:

• The depends attribute is forbidden on p:when, p:otherwise, p:catch, and
p:finally.

212

K. Ancillary files

https://www.w3.org/TR/2010/REC-xproc-20100511/
https://spec.xproc.org/lastcall-2020-08/head/xproc/

• Processors may remove any implicit connections that they can determine
statically will never be used (issue 995).

• Expanded and clarified the rules for implicit casting (issues 1001 and 1012).

• The semantics of the p:urify function were extensively redrafted and clarified.

• Text value templates are never expanded in the descendants of p:inline
elements that specify an encoding.

• Clarified the semantics of [p:]use-when to address potential deadlock
situations that can arise if two or more expressions depend on each other.

• Clarified that p:step-available cannot refer to the step currently being
declared (issue 1057).

• A number of error codes have been clarified and new error codes have been
added.

This list contains the non-editorial changes made after the December 2019 “last call”
draft:

• The visibility attribute of p:variable was removed.

• The description of the select attribute of p:option no longer mentions static
variables.

• Error XD0079 added for defective content-types. (Was XS0070 or XS00130).

This list contains the non-editorial changes made after the February 2019 “last call”
draft:

• The p:document-properties-document() function was removed

• The semantics of p:if have been changed. If the test expression is false, p:if
behaves roughly like an identity step. Previously it produced no outputs.

• It is no longer a static error (XS0093), if p:option or p:variable have an
attribute visibility and are not children of a p:library.

213

M. Change Log

https://github.com/xproc/3.0-specification/issues/995
https://github.com/xproc/3.0-specification/issues/1001
https://github.com/xproc/3.0-specification/issues/1012
https://github.com/xproc/3.0-specification/issues/1057
https://spec.xproc.org/lastcall-2019-12/head/xproc/
http://spec.xproc.org/lastcall-2019-02/head/xproc/

• The semantics of p:choose have been changed. The default sub-pipeline for a
missing p:otherwise is a p:identity step (with the additional feature that it
isn’t an error if there’s no default readable port). A primary output port on the
p:when branches for this is required.

• The way the context item for XPath expressions is provided has been changed. It
is now provided if and only if the connection delivers exactly one document,
otherwise the context item is undefined. A new error (XD0001) is introduced. It
is raised if an XPath expression makes use of the context item, but the context
item is undefined. Two dynamic errors (XD0005 and XD0008) were removed.

• Content type shortcuts and the notion of forbidden content types have been
added. See Section 3.4, “Specifying content types”.

• Introduction of the serialization document property. See Section 3.1,
“Document Properties”.

• The semantics pf p:viewport have been changed. HTML documents are now
allowed as input and match may now match every node type except attributes
and namespace nodes.

• Static p:variables have been removed; the semantics of static p:options have
been updated and clarified.

• Clarified that the base-uri property must always be a legal URI per [RFC 3986].

• Expanded the range of media types that may be considered “text” documents;
opened the possibility for implementations to extend the list.

• Clarified that leading and trailing whitespace within a p:inline is not
discarded.

• Identified the error port as the primary input port in p:catch.

• Clarified that p:finally must not declare a primary output port.

• Clarified which functions are available during static analysis.

• Clarified that atomic values are considered JSON documents.

• Made href required on c:entry.

214

M. Change Log

• Clarified how sequences of XDM values (for example, from a p:xslt step) are
converted into documents.

• Updated the description of the select attribute for p:input so that it is in line
with the more recent changes that have been applied to p:with-input.

• Changed description of p:viewport stating that the base URI of every matched
node is the document's base URI, not just for document and element nodes.

• Changed the default value for serialization property omit-xml-declaration
from true to false in section “Serialization method” . Removed remark about
default settings for this parameter from section “Minimal conformance”.

• Clarified the conditions under which steps may produce PSVI annotations.

• Added a cause attribute to the error vocabulary for recording the error codes of
underlying errors.

215

M. Change Log

