
Copyright © 2018, 2019, 2020, 2021, 2022 the Contributors to the XProc 3.0: Standard Step Library specification, published by the

XProc Next Community Group under the W3C Community Contributor License Agreement (CLA). A human-readable

summary is available.

XProc 3.0: Standard Step Library
Community Group Report 12 September 2022

Specification:
https://spec.xproc.org/3.0/steps/

Editors:
Norman Walsh
Achim Berndzen
Gerrit Imsieke
Erik Siegel

Participate:
GitHub xproc/3.0-steps
Report an issue

Errata:
https://spec.xproc.org/3.0/steps/errata.html

This document is also available in these non-normative formats: XML, PDF (A4), PDF
(US Letter).

Abstract
This specification describes the standard step vocabulary of XProc 3.0: An XML Pipeline
Language.

https://www.w3.org/
https://www.w3.org/Consortium/Legal/ipr-notice#Copyright
https://www.w3.org/community/xproc-next/
https://www.w3.org/community/about/agreements/cla/
https://www.w3.org/community/about/agreements/cla-deed/
https://spec.xproc.org/3.0/steps/
http://github.com/xproc/3.0-steps
http://github.com/xproc/3.0-steps/issues
https://spec.xproc.org/3.0/steps/errata.html

Status of this Document

This specification was published by the XProc Next Community Group. It is not
a W3C Standard nor is it on the W3C Standards Track. Please note that under the
W3C Community Contributor License Agreement (CLA) there is a limited opt-
out and other conditions apply. Learn more about W3C Community and
Business Groups.

If you wish to make comments regarding this document, please send them to
xproc-dev@w3.org. (subscribe, archives).

This document is derived from XProc: An XML Pipeline Language published by
the W3C.

1

Status of this Document

https://www.w3.org/community/xproc-next/
https://www.w3.org/community/about/agreements/cla/
https://www.w3.org/community/
https://www.w3.org/community/
mailto:xproc-dev@w3.org
mailto:xproc-dev-request@w3.org?subject=subscribe
https://lists.w3.org/Archives/Public/xproc-dev/
https://www.w3.org/TR/2010/REC-xproc-20100511/

1.

2.
2.1.
2.2.
2.3.
2.3.1.
2.3.2.
2.4.
2.4.1.
2.5.
2.5.1.
2.5.2.
2.5.3.
2.5.4.
2.5.5.
2.6.
2.7.
2.8.
2.9.
2.10.
2.11.
2.12.
2.13.
2.13.1.
2.13.2.
2.14.
2.15.
2.16.
2.17.

Table of Contents
Introduction... 5

The required steps.. 7
p:add-attribute.. 7
p:add-xml-base... 9
p:archive.. 10

The archive manifest.. 14
Handling of ZIP archives.. 16

p:archive-manifest.. 19
Overriding content types... 21

p:cast-content-type... 23
Casting from an XML media type.. 24
Casting from an HTML media type... 25
Casting from a JSON media type... 26
Casting from a text media type.. 26
Casting from any other media type... 27

p:compare.. 28
p:compress.. 29
p:count... 31
p:delete.. 32
p:error.. 33
p:filter... 34
p:hash... 35
p:http-request... 37

Construction of a multipart request... 46
Managing a multipart response... 47

p:identity... 48
p:insert... 48
p:json-join.. 50
p:json-merge.. 51

2

Table of Contents

2.18.
2.19.
2.19.1.
2.19.2.
2.19.3.
2.19.4.
2.19.5.
2.20.
2.21.
2.22.
2.23.
2.24.
2.25.
2.26.
2.27.
2.28.
2.29.
2.30.
2.31.
2.32.
2.33.
2.34.
2.35.
2.36.
2.37.
2.38.
2.39.
2.40.
2.41.
2.42.
2.43.
2.44.

p:label-elements.. 53
p:load... 54

Loading XML data.. 55
Loading text data.. 56
Loading JSON data... 56
Loading HTML data.. 57
Loading binary data... 57

p:make-absolute-uris... 58
p:namespace-delete.. 59
p:namespace-rename... 60
p:pack... 63
p:rename.. 64
p:replace.. 65
p:set-attributes.. 66
p:set-properties... 67
p:sink.. 68
p:split-sequence.. 69
p:store.. 70
p:string-replace... 72
p:text-count... 73
p:text-head.. 74
p:text-join... 74
p:text-replace.. 76
p:text-sort.. 77
p:text-tail.. 79
p:unarchive... 80
p:uncompress.. 84
p:unwrap... 85
p:uuid... 87
p:wrap-sequence.. 88
p:wrap.. 89
p:www-form-urldecode.. 91

3

Table of Contents

2.45.
2.46.
2.47.
2.47.1.
2.47.2.
2.48.
2.48.1.
2.48.2.
2.48.3.

3.

A.
A.1.
A.2.

B.
B.1.

C.

D.

E.

F.

p:www-form-urlencode.. 91
p:xinclude.. 92
p:xquery... 93

Example.. 96
Document properties... 97

p:xslt... 97
Invoking an XSLT 3.0 stylesheet... 99
Invoking an XSLT 2.0 stylesheet... 100
Invoking an XSLT 1.0 stylesheet... 102

Step Errors.. 102

Conformance.. 118
Implementation-defined features.. 119
Implementation-dependent features... 124

References... 124
Normative References... 124

Glossary.. 126

Ancillary files.. 126

Credits... 127

Change Log... 127

4

Table of Contents

1. Introduction
This specification describes the standard, required atomic XProc steps. A
machine-readable description of these steps may be found in steps.xpl.

Many atomic steps are available for [XProc 3.0]. They are described in several
specifications. This specification describes the general background common to all
steps. A conformant processor must implement all of the steps in this
specification. Additional steps may also be implemented.

The types given for options should be understood as follows:

• Types in the XML Schema namespace, identified as QNames with the xs:
prefix, as per the XML Schema specification with one exception. Anywhere
an xs:QName is specified, an EQName is allowed.

• XPathExpression: As a string per [W3C XML Schema: Part 2], including
whitespace normalization, and the further requirement to be a conformant
Expression per [XPath 3.1].

• XSLTSelectionPattern: As a string per [XSLT 3.0] conforming to an XSLT
selection pattern.

• XPathSequenceType: An XPath sequence type.

• ContentType: A media type as defined in [RFC 2046].

• ContentTypes: As a whitespace separated list of media types as defined in
[RFC 2046].

Option values are often expressed using the shortcut syntax. In these cases, the
option shortcuts are generally treated as value templates. However, for options of
type map() or array(), an expression is required (there is no non-expression
string which can ever be a legal value for a map or array). Given that every value

5

1. Introduction

https://www.w3.org/TR/xquery-30/#doc-xquery30-EQName
https://www.w3.org/TR/xpath-31/#id-types

entered this way will have to be a value template, and consequently every curly
brace contained within the expression will have to be escaped, values of type
map or array are defined to be expressions directly.

Some aspects of documents are generally unchanged by steps:

• When a step in this library produces an output document, the base URI of
the output is the base URI of the step's primary input document unless the
step's process explicitly sets an xml:base attribute or the step's description
explicitly states how the base URI is constructed.

• Steps are responsible for describing how document properties are
transformed as documents flow through them. Many steps claim that the
specified properties are preserved. Generally, it is the responsibility of the
pipeline author to determine when this is inapropriate and take corrective
action. However, it is the responsibility of the pipeline processor to assure
that the content-type property is correct. If a step transforms a document
in a manner that is inconsistent with the content-type property (accepting
an XML document on the source port but producing a text document on the
result, for example), the processor must assure that the content-type
property is appropriate. If a step changes the content-type in this way, it
must also remove the serialization property

Also, in this specification, several steps use this element for result information:

<c:result>
 string
</c:result>

When a step uses an XPath to compute an option value, the XPath context is as
defined in [XProc 3.0].

When a step specifies a particular version of a technology, implementations must
implement that version or a subsequent version that is backwards compatible

6

1. Introduction

with that version. At user-option, they may implement other non-backwards
compatible versions.

In this specification the words must, must not, should, should not, may and
recommended are to be interpreted as described in [RFC 2119].

As described in PSVIs in XProc in XProc 3.0: An XML Pipeline Language, steps may
not produce PSVI output unless that behavior is explicitly described. In this
specification, the steps that may produce PSVI output are the “identity” steps:
p:identity, p:store, and p:split-sequence (which must preserve PSVI
properties that appear on their inputs). In addition, the p:xslt and p:xquery
steps may return documents with PSVI annotations.

2. The required steps
A conformant processor must support all of these steps.

2.1. p:add-attribute
The p:add-attribute step adds a single attribute to a set of matching elements.
The input document specified on the source is processed for matches specified
by the selection pattern in the match option. For each of these matches, the
attribute whose name is specified by the attribute-name option is set to the
attribute value specified by the attribute-value option.

The resulting document is produced on the result output port and consists of a
exact copy of the input with the exception of the matched elements. Each of the
matched elements is copied to the output with the addition of the specified
attribute with the specified value.

7

2. The required steps

https://spec.xproc.org/3.0/xproc/#psvi-support
https://spec.xproc.org/3.0/xproc/

<p:declare-step type="p:add-attribute">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="match" as="xs:string" select="'/*'"/>
 <p:option name="attribute-name" required="true" as="xs:QName"/>
 <p:option name="attribute-value" required="true" as="xs:string"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if the selection pattern matches a node which is not an element.

The value of the attribute-value option must be a legal attribute value
according to XML.

If an attribute with the same name as the expanded name from the attribute-
name option exists on the matched element, the value specified in the
attribute-value option is used to set the value of that existing attribute. That
is, the value of the existing attribute is changed to the attribute-value value.

Note
If multiple attributes need to be set on the same element(s), the
p:set-attributes step can be used to set them all at once.

This step cannot be used to add namespace declarations. It is a dynamic
error (err:XC0059) if the QName value in the attribute-name option uses the
prefix “xmlns” or any other prefix that resolves to the namespace name http://
www.w3.org/2000/xmlns/. Note, however, that while namespace declarations
cannot be added explicitly by this step, adding an attribute whose name is in a
namespace for which there is no namespace declaration in scope on the matched
element may result in a namespace binding being added by namespace fixup.

8

2. The required steps

If an attribute named xml:base is added or changed, the base URI of the element
must also be amended accordingly.

Document properties

All document properties are preserved.

2.2. p:add-xml-base
The p:add-xml-base step exposes the base URI via explicit xml:base attributes.
The input document from the source port is replicated to the result port with
xml:base attributes added to or corrected on each element as specified by the
options on this step.

<p:declare-step type="p:add-xml-base">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="all" as="xs:boolean" select="false()"/>
 <p:option name="relative" as="xs:boolean" select="true()"/>
</p:declare-step>

The value of the all option must be a boolean.

The value of the relative option must be a boolean.

It is a dynamic error (err:XC0058) if the all and relative options are both true.

The p:add-xml-base step modifies its input as follows:

• For every element that is a child of the document node: force the element to
have an xml:base attribute with the document's [base URI] property's value
as its value.

• For other elements:

9

2. The required steps

◦ If the all option has the value true, force the element to have an
xml:base attribute with the element's [base URI] value as its value.

◦ If the element's [base URI] is different from the its parent's [base URI],
force the element to have an xml:base attribute with the following
value: if the value of the relative option is true, a string which, when
resolved against the parent's [base URI], will give the element's [base
URI], otherwise the element's [base URI].

◦ Otherwise, if there is an xml:base attribute present, remove it.

Document properties

All document properties are preserved.

2.3. p:archive
The p:archive step outputs on its result port an archive (usually binary)
document, for instance a ZIP file. A specification of the contents of the archive
may be specified in a manifest XML document on the manifest port. The step
produces a report on the report port, which contains the manifest, amended
with additional information about the archiving.

10

2. The required steps

<p:declare-step type="p:archive">
 <p:input port="source" primary="true" content-types="any"
sequence="true"/>
 <p:input port="manifest" content-types="xml" sequence="true">
 <p:empty/>
 </p:input>
 <p:input port="archive" content-types="any" sequence="true">
 <p:empty/>
 </p:input>
 <p:output port="result" primary="true" content-types="any"
sequence="false"/>
 <p:output port="report" content-types="application/xml"
sequence="false"/>
 <p:option name="format" as="xs:QName" select="'zip'"/>
 <p:option name="relative-to" as="xs:anyURI?"/>
 <p:option name="parameters" as="map(xs:QName, item()*)?"/>
</p:declare-step>

The p:archive step can perform several different operations on archives. The
most common one will likely be creating an archive, but it could also, depending
on the archive format, provide services like update, freshen or even merge. The
only format implementations must support is [ZIP]. The list of formats
supported by the p:archive step is implementation-defined.

The p:archive step has the following input ports:

source
The (primary) source port is used to provide documents to be archived (for
instance constructed by other steps). How and which of these documents are
processed is governed by the document(s) appearing on the other input
ports and the combination of options and parameters. See below for details.
It is a dynamic error (err:XC0084) if two or more documents appear on the
p:archive step's source port that have the same base URI or if any
document that appears on the source port has no base URI.

manifest
The manifest port can receive a manifest document that tells the step how
to construct the archive. If no manifest document is provided on this port, a

11

2. The required steps

default manifest is constructed automatically. See Section 2.3.1, “The archive
manifest”. It is a dynamic error (err:XC0100) if the document on port
manifest does not conform to the given schema.

It is a dynamic error (err:XC0112) if more than one document appears on the
port manifest.

The default input for this port is the empty sequence.

archive
The archive port is used to provide the step with existing archive(s) for
operations like update, freshen or merge. Handling of ZIP files supports
modifying archives appearing on the archive port (Section 2.3.2, “Handling
of ZIP archives”). The list of archive formats that can be modified by
p:archive is implementation-defined. For instance an implementation that
supports archive merging may accept more than one document on the
archive port.

The default input for this port is the empty sequence.

The p:archive step has the following output ports:

result
The (primary) result port will output the resulting archive.

report
The report port will output a report about the archiving operation. This will
be the same as the manifest (as provided on the manifest port or
automatically created if there was no manifest provided), optionally
amended with additional attributes and/or elements. The semantics of any
additional attributes, elements and their values are implementation-defined.

The p:archive step has the following options:

12

2. The required steps

format
The format of the archive can be specified using the format option.
Implementations must support the [ZIP] format, specified with the value
zip. It is implementation-defined what other formats are supported.

parameters
The parameters option can be used to supply parameters to control the
archiving. The semantics of the keys and the allowed values for these keys
are implementation-defined. It is a dynamic error (err:XC0079) if the map
parameters contains an entry whose key is defined by the implementation
and whose value is not valid for that key.

relative-to
The relative-to option is used in creating a manifest when no manifest is
provided on the manifest port. If a manifest is present this option is not
used. If the option’s value is a relative URI, it is made absolute against the
base URI of the element on which it is specified (p:with-option or the step
in case of a syntactic shortcut value). It is a dynamic error (err:XD0064) if the
base URI is not both absolute and valid according to [RFC 3986].

The format of the archive is determined as follows:

• If the format option is specified, this determines the format of the archive.
Implementations must support the [ZIP] format, specified with the value
zip. It is implementation-defined what other formats are supported. It is a
dynamic error (err:XC0081) if the format of the archive does not match the
format as specified in the format option.

• If no format option is specified or if its value is the empty sequence, the
archive's format will be determined by the step, using the content-type
document-property of the document on the archive port and/or by
inspecting its contents. It is implementation-defined how the step determines

13

2. The required steps

the archive's format. Implementations should recognize archives in [ZIP]
format.

It is a dynamic error (err:XC0085) if the format of the archive does not match the
specified format, cannot be understood, determined and/or processed.

2.3.1. The archive manifest

An archive manifest specifies which documents will be considered in processing
the archive. Every entry in the archive must have a corresponding entry in the
manifest; if no such entry is provided, one will be constructed automatically (see
below). If manifest entries are provided for documents that are not in the archive,
how those are processed depends on the archive type and the parameters passed
to the step.

A manifest is represented by a c:archive root element:

<c:archive>
 (c:entry* &
 anyNonXProcElement*)
</c:archive>

The c:archive root element may contain additional implementation-defined
attributes.

All entries in the archive must be present as c:entry child elements:

<c:entry
 name = string
 href = anyURI
 comment? = string
 method? = string
 level? = string
 content-type? = ContentType>
 anyElement*
</c:entry>

14

2. The required steps

• The name attribute specifies the name of the entry in the archive.

• The href attribute must be a valid URI according to [RFC 3986]. If its value
is relative, it is made absolute against the base URI of the manifest. There are
two possible cases:

◦ If the (absolute) href value is exactly the same as the base URI of a
document appearing on the source port, that document is associated
with this entry. If this entry is to be added to the archive, the associated
document will be used. (The serialization document property can be
used to provide serialization properties.)

◦ If no document on the source port has a base URI that is exactly the
same as the (absolute) href value, the document at the specified URI is
associated with this entry. These documents are stored in the archive “as
is”; they must not be parsed and re-serialized.

• The method attribute specifies how the entry should be compressed. The
default compression method is implementation-defined. Implementations must
support no compression, specified with the value none. It is implementation-
defined what other compression methods are supported.

• The level attribute specifies the level of compression. The default
compression method is implementation-defined. It is implementation-defined
what compression levels are supported.

• The content-type attribute specifies the content-type of the entry as
detected by the processor. It will be set by p:archive-manifest in
constructing the manifest. It will be ignored by p:archive.

The p:archive step should strive to retain the order of the c:entry elements
when constructing the archive. For instance, an e-book in EPUB format has a

15

2. The required steps

non-compressed entry that must be first in the archive. It should be possible to
construct such an archive using p:archive.

The c:entry elements may contain additional implementation-defined attributes.

If no manifest entry is provided for a document appearing on the source port,
the step will create a manifest entry for the document. (If no document arrives on
the manifest port at all, a complete manifest document will be created.)

In a constructed manifest entry:

• The entry’s href value is the base URI of the document.

• The entry’s name value is derived from the base URI of the document and
the relative-to option.

◦ First, the value of the relative-to option is made absolute. If the initial
substring of the base URI is exactly the same as the resulting absolute
value, then the name is the portion of the base URI that follows that
initial substring.

◦ If there is no relative-to option or if its value is not the initial
substring of the base URI of the document, the name is the path portion
of the URI (per [RFC 3986]). If the path portion begins with an initial
slash, that slash is removed.

It is a dynamic error (err:XC0118) if an archive manifest is invalid according to
the specification.

2.3.2. Handling of ZIP archives

The format of the archive can be specified using the format option.
Implementations must support the [ZIP] format, specified with the value zip.

16

2. The required steps

When ZIP archives are processed, every name in the manifest must be a relative
path without a leading slash.

The parameters option can be used to supply parameters to control the
archiving. For the zip format, the following parameters must be supported:

command
Specifies what operation to perform. If not specified, its default value is
update. Implementations must support the values update, create,
freshen, and delete. The p:archive step may support additional,
implementation-defined commands for ZIP files. Unless otherwise specified,
exactly zero or one ZIP archive can appear on the archive port for the
commands described below. If no archive appears, a new archive will be
created.

update
When the command parameter is set to update, the ZIP archive will be
updated:

1. For every entry in the ZIP file:

◦ If the manifest contains a c:entry with a matching name, the
entry in the ZIP file is updated with the document identified
by the c:entry in the manifest.

◦ If the manifest does not contain a matching c:entry, the ZIP
entry name is resolved against the base URI of the ZIP file.

▪ If a document exists at that URI and either has no
timestamp or has a timestamp more than the timestamp in
the ZIP file, the entry in the ZIP file will be updated with
the document at the resolved URI.

17

2. The required steps

▪ If no document exists at that URI, or the document cannot
be accessed, or the document has a timestamp and the
timestamp in the ZIP archive is more recent than the
timestamp of the document, then the ZIP entry is
unchanged.

2. For every c:entry in the manifest that does not have a matching
entry in the ZIP file, the ZIP file will be updated by adding the
document identified by the c:entry to the ZIP file.

create
When the command parameter is set to create, the ZIP archive will be
created. Creating a ZIP archive behaves exactly like update except that
any timestamps are ignored; every ZIP entry will be updated or created
if there is a c:entry or matching document for it. The document must
be obtained by dereferencing the URI in href. It is a dynamic
error (err:XD0011) if the resource referenced by the href option does
not exist, cannot be accessed or is not a file.

freshen
When the command parameter is set to freshen, existing files in the ZIP
archive may be updated, but no new files will be added. Freshing a ZIP
archive behaves exactly like update except that only entries that already
exist in the ZIP archive are considered.

delete
When the command parameter is set to delete, exactly one document in
ZIP format must appear on the archive port. For every entry in the ZIP
file:

• If the manifest contains a c:entry with a matching name, the entry
in the ZIP file is removed from the ZIP archive.

18

2. The required steps

If the manifest contains c:entry elements which do not have a
matching entry in the ZIP archive, they are simply ignored.

level
Specifies the default compression level for files added to or updated in the
archive. If the level attribute is specified on a c:entry, its value takes
precedence for that entry. Values that must be supported for ZIP files are:
“smallest”, “fastest”, “default”, “huffman”, and “none”.

method
Specifies the default compression method for files added to or updated in
the archive. If the method attribute is specified on a c:entry, its value takes
precedence for that entry. Values that must be supported for ZIP files are:
“none” and “deflated”.

It is a dynamic error (err:XC0080) if the number of documents on the archive
does not match the expected number of archive input documents for the given
format and command.

Implementations of other archive formats should use the same parameter names
if applicable. The value spaces for these parameters may be format-specific
though. The actual parameter names supported by p:archive for a particular
format are implementation-defined.

Document properties

No document properties are preserved. The archive has no base-uri.

2.4. p:archive-manifest
The p:archive-manifest creates an XML manifest file describing the contents
of the archive appearing on its source port.

19

2. The required steps

<p:declare-step type="p:archive-manifest">
 <p:input port="source" primary="true" content-types="any"
sequence="false"/>
 <p:output port="result" primary="true" content-types="application/xml"
sequence="false"/>
 <p:option name="format" as="xs:QName?"/>
 <p:option name="parameters" as="map(xs:QName, item()*)?"/>
 <p:option name="relative-to" as="xs:anyURI?"/>
 <p:option name="override-content-types"
as="array(array(xs:string))?"/>
</p:declare-step>

The p:archive-manifest step inspects the archive appearing on its source port
and outputs a manifest describing the contents of the archive on its result port.

The format of the archive is determined as follows:

• If the format option is specified, this determines the format of the archive.
Implementations must support the [ZIP] format, specified with the value
zip. It is implementation-defined what other formats are supported.

• If no format option is specified or if its value is the empty sequence, the
archive's format will be determined by the step, using the content-type
document-property of the document on the source port and/or by
inspecting its contents. It is implementation-defined how the step determines
the archive's format. Implementations should recognize archives in [ZIP]
format.

It is a dynamic error (err:XC0085) if the format of the archive does not match the
specified format, cannot be understood, determined and/or processed.

The parameters option can be used to supply parameters to control the archive
manifest generation. The semantics of the keys and the allowed values for these
keys are implementation-defined. It is a dynamic error (err:XC0079) if the map
parameters contains an entry whose key is defined by the implementation and
whose value is not valid for that key.

20

2. The required steps

The relative-to option, when present, is used in creating the value of the
manifest's c:entry/@href attribute. If the option is relative, it is made absolute
against the base URI of the element on which it is specified (p:with-option or
the step in case of a syntactic shortcut value). It is a dynamic error (err:XD0064) if
the base URI is not both absolute and valid according to [RFC 3986].

The generated manifest has the format as described in Section 2.3.1, “The archive
manifest”. Implementations must supply an c:entry element and its name and
content-type attributes for every entry in the archive. The value of the
generated manifest's c:entry/@href attribute will be determined in the same
way as a base URI of an unarchived document by Section 2.38, “p:unarchive”. It
is a dynamic error (err:XC0120) if the relative-to option is not present and the
document on the source port does not have a base URI. Additional information
provided for entries in p:archive-manifest is implementation-defined.

2.4.1. Overriding content types

The override-content-types option can be used to partially override the
content-type determination mechanism. If present, it must be an array of arrays,
where the inner arrays consist of exactly two strings:

• The first member in an inner array must be a regular expression as specified
in [XPath and XQuery Functions and Operators 3.1], section 7.61 “Regular
Expression Syntax”. It is a dynamic error (err:XC0147) if the specified
value is not a valid XPath regular expression.

• The second member in an inner array must be a valid a MIME content-type.
It is a dynamic error (err:XD0079) if a supplied content-type is not a valid
media type of the form “type/subtype+ext” or “type/subtype”.

21

2. The required steps

It is a dynamic error (err:XC0146) if the specified value for the override-
content-types option is not an array of arrays, where the inner arrays have
exactly two members of type xs:string.

Determining an archive entry's content-type is as follows:

• The XPath regular expressions (the first members of the inner arrays) will be
matched against the path of the entry in the archive. This will be done in the
order of appearance in the outer array (so order is significant). The matching
is done unanchored: it is a match if the regular expression matches part of
the entry's path. Informally: matching behaves like applying the XPath
matches#2 function, like in matches($path-in-archive, $regular-
expression).

Note
Depending on how archives are constructed, the path of an
entry in an archive can be with or without a leading slash.
Usually it will be without. For archives constructed by
p:archive no leading slash will be present.

• If a match is found, the content-type (the second member of the inner array
for which the match was found) is used as the entry's content-type.

• If no match was found for all inner arrays, the normal (implementation-
defined) mechanism for determining the content-type is used.

For example: setting the override-content-types option to [['.rels$',
'application/xml'], ['^special/', 'application/octet-stream']]
means that all files ending with .rels will get the content-type application/

22

2. The required steps

xml. All files in the archive's special directory (including sub-directories) will
get the content-type application/octet-stream.

Document properties

No document properties are preserved. The manifest has no base-uri.

2.5. p:cast-content-type
The p:cast-content-type step creates a new document by changing the media
type of its input. If the value of the content-type option and the current media
type of the document on source port are the same, this document will appear
unchanged on result port.

<p:declare-step type="p:cast-content-type">
 <p:input port="source" content-types="any"/>
 <p:output port="result" content-types="any"/>
 <p:option name="content-type" required="true" as="xs:string"/>
 <p:option name="parameters" as="map(xs:QName,item()*)?"/>
</p:declare-step>

The input document is transformed from one media type to another. It is a
dynamic error (err:XD0079) if a supplied content-type is not a valid media type of
the form “type/subtype+ext” or “type/subtype”. It is a dynamic
error (err:XC0071) if the p:cast-content-type step cannot perform the
requested cast.

The parameters can be used to supply parameters to control casting. The
semantics of the keys and the allowed values for these keys are implementation-
defined. It is a dynamic error (err:XC0079) if the map parameters contains an
entry whose key is defined by the implementation and whose value is not valid
for that key.

23

2. The required steps

2.5.1. Casting from an XML media type

• Casting from one XML media type to another simply changes the “content-
type” document property.

• Casting from an XML media type to an HTML media type changes the
“content-type” document property and removes any serialization
property.

• Casting from an XML media type to a JSON media type converts the XML
into JSON. The precise nature of the conversion from XML to JSON is
implementation-defined. If the input document is an XML representation of
JSON as defined in [XPath and XQuery Functions and Operators 3.1],
implementations must produce the same result as fn:parse-json(fn:xml-
to-json()) by default. If the input document has a c:param-set document
element, an instance of map(xs:QName, xs:string) must be returned that
represents the document's c:param elements. The serialization property is
removed.

• Casting from an XML media type to a text media type serializes the XML
document by calling fn:serialize($doc, $param) where $doc is the
document on the source port and $param is the serialization property of this
document. The resulting string is wrapped by a document node and
returned on the result port. The serialization property is removed.

• Casting from an XML media type to any other media type must support the
case where the input document is a c:data document. The resulting
document will have the specified media type and a representation that is the
content of the c:data element after decoding the base64 encoded content
The serialization property is removed.

It is a dynamic error (err:XC0072) if the c:data contains content is not a
valid base64 string.

24

2. The required steps

It is a dynamic error (err:XC0073) if the c:data element does not have a
content-type attribute.

It is a dynamic error (err:XC0074) if the content-type is supplied and is not
the same as the content-type specified on the c:data element.

Casting from an XML media type to any other media type when the input
document is not a c:data document is implementation-defined.

2.5.2. Casting from an HTML media type

• Casting from an HTML media type to an XML media type changes
“content-type” document property and removes any serialization
property.

• Casting from an HTML media type to another HTML media type changes
“content-type” document property.

• Casting from an HTML media type to a JSON media type is implementation-
defined.

• Casting an an HTML media type to a text media type serializes the HTML
document by calling fn:serialize($doc, $param) where $doc is the
document on the source port and $param is the serialization property of this
document. The resulting string is wrapped by a document node and
returned on the result port. The serialization property is removed.

• Casting from an HTML media type to any other media type is
implementation-defined.

25

2. The required steps

2.5.3. Casting from a JSON media type

• Casting from a JSON media type to an XML media type converts the JSON
into XML. An implementation must support the format specified in section
“XML Representation of JSON” of [XPath and XQuery Functions and
Operators 3.1] as default for the resulting XML. It is implementation-defined
whether other result formats are supported. The serialization property is
removed.

• Casting from a JSON media type to an HTML media type is implementation-
defined.

• Casting from a JSON media type to another JSON media type changes
“content-type” document property.

• Casting from a JSON media type to a text media type serializes the JSON
document by calling fn:serialize($doc, $param) where $doc is the
document on the source port and $param is the serialization property of this
document. The resulting string is wrapped by a document node and
returned on the result port. The serialization property is removed.

• Casting from a JSON media type to any other media type is implementation-
defined.

2.5.4. Casting from a text media type

• Casting from a text media type to an XML media type parses the text value
of the document on source port by calling fn:parse-xml. It is a dynamic
error (err:XD0049) if the text value is not a well-formed XML document. The
serialization property is removed.

• Casting from a text media type to an HTML media type parses the text value
of the document on source port into an XPath data model document that

26

2. The required steps

contains a tree of elements, attributes, and other nodes. The precise way in
which text documents are parsed into the XPath data model is
implementation-defined. It is a dynamic error (err:XD0060) if the text document
can not be converted into the XPath data model. The serialization property is
removed.

• Casting from a text media type to a JSON media type parses the text value of
the document on source port by calling fn:parse-json($doc, $par)
where $doc is the text document and $par is the parameter option. It is a
dynamic error (err:XD0057) if the text document does not conform to the
JSON grammar, unless the parameter liberal is true and the processor
chooses to accept the deviation. It is a dynamic error (err:XD0058) if the
parameter duplicates is reject and the text document contains a JSON object
with duplicate keys. It is a dynamic error (err:XD0059) if the parameter map
contains an entry whose key is defined in the specification of fn:parse-
json and whose value is not valid for that key, or if it contains an entry with
the key fallback when the parameter escape with true() is also present.
The serialization property is removed.

• Casting from a text media type to another text media type changes
“content-type” document property.

• Casting from a text media type to any other media type is implementation-
defined.

2.5.5. Casting from any other media type

• Casting from a non-XML media type to an XML media type produces an
XML document with a c:data document element. The original media type
will be preserved in the content-type attribute on the c:data element.

27

2. The required steps

<c:data
 content-type = ContentType
 charset? = string
 encoding? = string>
 string
</c:data>

The content of the c:data element is the base64 encoded representation of
the non-XML content. The serialization property is removed.

• Casting from any other media type to a HTML media type, a JSON media
type or a text document is implementation-defined.

• Casting from any other media type to any other media type is
implementation-defined.

Document properties

All document properties are preserved except the content-type property which
is updated accordingly and the serialization property which is removed by
some casting methods.

2.6. p:compare
The p:compare step compares two documents for equality.

<p:declare-step type="p:compare">
 <p:input port="source" primary="true" content-types="any"/>
 <p:input port="alternate" content-types="any"/>
 <p:output port="result" content-types="application/xml"/>
 <p:output port="differences" content-types="any" sequence="true"/>
 <p:option name="parameters" as="map(xs:QName,item()*)?"/>
 <p:option name="method" as="xs:QName?"/>
 <p:option name="fail-if-not-equal" as="xs:boolean" select="false()"/>
</p:declare-step>

28

2. The required steps

This step takes single documents on each of two ports and compares them. If
method is not specified, or if deep-equal is specified, the comparison uses
fn:deep-equal (as defined in [XPath and XQuery Functions and Operators 3.1]).
Implementations of p:compare must support the deep-equal method; other
supported methods are implementation-defined. It is a dynamic error (err:XC0076)
if the comparison method specified in p:compare is not supported by the
implementation. It is a dynamic error (err:XC0077) if the media types of the
documents supplied are incompatible with the comparison method.

It is a dynamic error (err:XC0019) if the documents are not equal according to the
specified comparison method, and the value of the fail-if-not-equal option is
true. If the documents are equal, or if the value of the fail-if-not-equal
option is false, a c:result document is produced with contents true if the
documents are equal, otherwise false.

If fail-if-not-equal is false, and the documents differ, an implementation-
defined summary of the differences between the two documents may appear on
the differences port.

Document properties

No document properties are preserved. The comparison document has no base-
uri.

2.7. p:compress
The p:compress step serializes the document appearing on its source port and
outputs a compressed version of this on its result port.

29

2. The required steps

<p:declare-step type="p:compress">
 <p:input port="source" primary="true" content-types="any"
sequence="false"/>
 <p:output port="result" primary="true" content-types="any"
sequence="false"/>
 <p:option name="format" as="xs:QName" select="'gzip'"/>
 <p:option name="serialization" as="map(xs:QName,item()*)?"/>
 <p:option name="parameters" as="map(xs:QName, item()*)?"/>
</p:declare-step>

The p:compress step first serializes the document appearing on its source. It
then compresses the outcome of this serialization and outputs the result on its
result port.

The p:compress step has the following options:

format
The format of the compression can be specified using the format option.
Implementations must support the [GZIP] format, specified with the value
gzip. It is implementation-defined what other formats are supported. It is a
dynamic error (err:XC0202) if the compression format cannot be understood,
determined and/or processed.

parameters
The parameters option can be used to supply parameters to control the
compression. The semantics of the keys and the allowed values for these
keys are implementation-defined. It is a dynamic error (err:XC0079) if the map
parameters contains an entry whose key is defined by the implementation
and whose value is not valid for that key.

serialization
The serialization option is provided to control the serialization of content
before compression takes place. If the document to be stored has a
serialization property, the serialization is controlled by the merger of the
two maps where the entries in the serialization property take
precedence. Serialization is described in [XProc 3.0].

30

2. The required steps

Document properties

All document properties are preserved, except for the content-type property
which is updated accordingly and the serialization property which is
removed.

2.8. p:count
The p:count step counts the number of documents in the source input sequence
and returns a single document on result containing that number. The generated
document contains a single c:result element whose contents is the string
representation of the number of documents in the sequence.

<p:declare-step type="p:count">
 <p:input port="source" content-types="any" sequence="true"/>
 <p:output port="result" content-types="application/xml"/>
 <p:option name="limit" as="xs:integer" select="0"/>
</p:declare-step>

If the limit option is specified and is greater than zero, the p:count step will
count at most that many documents. This provides a convenient mechanism to
discover, for example, if a sequence consists of more than 1 document, without
requiring every single document to be buffered before processing can continue.

Document properties

No document properties are preserved. The count document has no base-uri.

31

2. The required steps

2.9. p:delete
The p:delete step deletes items specified by a selection pattern from the source
input document and produces the resulting document, with the deleted items
removed, on the result port.

<p:declare-step type="p:delete">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="text xml html"/>
 <p:option name="match" required="true" as="xs:string"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. A selection
pattern may match multiple items to be deleted.

If an element is selected by the match option, the entire subtree rooted at that
element is deleted.

It is a dynamic error (err:XC0023) if the match option matches the document
node.

This step cannot be used to remove namespaces. It is a dynamic
error (err:XC0062) if the match option matches a namespace node. Also, note
that deleting an attribute named xml:base does not change the base URI of the
element on which it occurred.

Document properties

If the resulting document contains exactly one text node, the content-type
property is changed to text/plain and the serialization property is
removed, while all other document properties are preserved. In all other cases,
all document properties are preserved.

32

2. The required steps

2.10. p:error
The p:error step generates a dynamic error using the input provided to the step.

<p:declare-step type="p:error">
 <p:input port="source" sequence="true" content-types="text xml"/>
 <p:output port="result" sequence="true" content-types="any"/>
 <p:option name="code" required="true" as="xs:QName"/>
</p:declare-step>

This step uses the document provided on its input as the content of the error
raised. An instance of the c:errors element will be produced on the error
output port, as is always the case for dynamic errors. The error generated can be
caught by a p:try just like any other dynamic error.

For authoring convenience, the p:error step is declared with a single, primary
output port. With respect to connections, this port behaves like any other output
port even though nothing can ever appear on it since the step always fails.

For example, given the following invocation:

<p:error xmlns:my="http://www.example.org/error"
 name="bad-document" code="my:unk12">
 <p:with-input port="source">
 <message>The document element is unknown.</message>
 </p:with-input>
</p:error>

The error vocabulary element (and document) generated on the error output port
would be:

33

2. The required steps

<c:errors xmlns:c="http://www.w3.org/ns/xproc-step"
 xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:my="http://www.example.org/error">
 <c:error name="bad-document" type="p:error"
 code="my:unk12"><message
 >The document element is unknown.</message>
</c:error>
</c:errors>

The href, line and column, or offset, might also be present on the c:error to
identify the location of the p:error element in the pipeline.

Document properties

No document properties are preserved but that’s irrelevant as no document is
ever produced.

2.11. p:filter
The p:filter step selects portions of the source document based on a (possibly
dynamically constructed) XPath select expression.

<p:declare-step type="p:filter">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" sequence="true" content-types="text xml
html"/>
 <p:option name="select" required="true" as="xs:string"/>
</p:declare-step>

This step behaves just like an p:input with a select expression except that the
select expression is computed dynamically.

34

2. The required steps

Document properties

No document properties are preserved. The base-uri property of each
document will reflect the base URI of the selected node(s).

2.12. p:hash
The p:hash step generates a hash, or digital “fingerprint”, for some value and
injects it into the source document.

<p:declare-step type="p:hash">
 <p:input port="source" primary="true" content-types="xml html"/>
 <p:output port="result" content-types="text xml html"/>
 <p:option name="parameters" as="map(xs:QName,item()*)?"/>
 <p:option name="value" required="true" as="xs:string"/>
 <p:option name="algorithm" required="true" as="xs:QName"/>
 <p:option name="match" as="xs:string" select="'/*/node()'"/>
 <p:option name="version" as="xs:string?"/>
</p:declare-step>

The value of the algorithm option must be a QName. If it does not have a prefix,
then it must be one of the following values: “crc”, “md”, or “sha”.

If a version is not specified, the default version is algorithm-defined. For “crc”
it is 32, for “md” it is 5, for “sha” it is 1.

A hash is constructed from the string specified in the value option using the
specified algorithm and version. Implementations must support [CRC32], [RFC
1321], and [SHA1] hashes. It is implementation-defined what other algorithms are
supported. The resulting hash should be returned as a string of hexadecimal
characters.

The value of the match option must be an XSLTSelectionPattern.

35

2. The required steps

The hash of the specified value is computed using the algorithm and parameters
specified. It is a dynamic error (err:XC0036) if the requested hash algorithm is not
one that the processor understands or if the value or parameters are not
appropriate for that algorithm.

The matched nodes are specified with the selection pattern in the match option.
For each matching node, the string value of the computed hash is used in the
output (if more than one node matches, the same hash value is used in each
match). Nodes that do not match are copied without change.

If the expression given in the match option matches an attribute, the hash is used
as the new value of the attribute in the output. If the attribute is named
“xml:base”, the base URI of the element must also be amended accordingly.

If the document node is matched, the entire document is replaced by a text node
with the hash. What appears on port result is a text document with the text
node wrapped in a document node.

If the expression matches any other kind of node, the entire node (and not just its
contents) is replaced by the hash.

Document properties

If the resulting document contains exactly one text node, the content-type
property is changed to text/plain and the serialization property is
removed, while all other document properties are preserved. For other document
types, all document properties are preserved.

36

2. The required steps

2.13. p:http-request
The p:http-request step allows authors to interact with resources over HTTP
or related protocols. Implementations must support the http and https
protocols. (Implementors are encouraged to support as many protocols as
practical. In particular, pipeline authors may attempt to use p:http-request to
load documents with computed URIs using the file: scheme.)

<p:declare-step type="p:http-request">
 <p:input port="source" content-types="any" sequence="true"/>
 <p:output port="result" primary="true" content-types="any"
sequence="true"/>
 <p:output port="report" content-types="application/json"/>
 <p:option name="href" as="xs:anyURI" required="true"/>
 <p:option name="method" as="xs:string?" select="'GET'"/>
 <p:option name="serialization" as="map(xs:QName,item()*)?"/>
 <p:option name="headers" as="map(xs:string, xs:string)?"/>
 <p:option name="auth" as="map(xs:string, item()+)?"/>
 <p:option name="parameters" as="map(xs:QName, item()*)?"/>
 <p:option name="assert" as="xs:string" select="'.?status-code lt
400'"/>
</p:declare-step>

The p:http-request step performs the HTTP request specified by the method
option against the URI specified in the href option. In simple cases, for example,
a GET request on an unauthenticated URI, nothing else is necessary to form a
complete request.

If the method, for example, POST, supports a body, the request body is
constructed using the document(s) appearing on the source port. For the
convenience of pipeline authors, documents may appear on the source port even
when the request method (such as GET or HEAD) does not define the semantics
of a payload. If the semantics are undefined, the documents are ignored when
constructing the request unless the parameters option specifies “send-body-
anyway” as true().

37

2. The required steps

The headers for the request come from the headers option (see below). If exactly
one document appears on the source port, its document properties also
contribute to the overall request headers.

The response from the HTTP request appears on the result and report ports.
Any documents contained in the response body will appear on the result port.
Each document in the response will be parsed according to its content-type (but
see “override-content-type” in the parameters option). Details about the
outcome of the request will appear as a map on the report port. The map will
always contain:

status-code (an xs:integer)
This is the HTTP status code returned for the request.

base-uri (an xs:anyURI)
This is the URI of the last request made and is always available in the report
even when the request does not return any documents. In the case of HTTP
redirection, the base URI returned may be different from the original request
URI.

headers (a map(xs:string, xs:string))
These are the HTTP headers returned for the request. The map may be
empty. Header names are converted to lowercase.

The p:http-request step has the following options:

href
The href option specifies the request’s IRI. Relative values are resolved
against the base URI of the element on which the option is specified (the
relevant p:with-option or the step element in the case of a syntactic
shortcut value).

Fragment identifiers are removed before making the request. Query
parameters are passed through unchanged. It is a dynamic

38

2. The required steps

error (err:XC0128) if the URI’s scheme is unknown or not supported. It is
the pipeline author’s responsibility to escape problematic UTF-8 characters
in the href value, for example with escape-html-uri().

method
The method specifies the HTTP request method. The value is implicitly
turned into an uppercase string if necessary. It is implementation defined
which HTTP methods are supported. An implementation should implement
at least the methods GET, POST, PUT, DELETE, and HEAD (for HTTP and
HTTPS). It is a dynamic error (err:XC0122) if the given method is not
supported.

serialization
The serialization option is used to control the serialization of documents
for the request body. If a document has a “serialization” document
property, the effective value of the serialization options is the union of the
two maps, where the entries in the “serialization” document property
take precedence.

headers
The key/value pairs in the headers map are used to construct the request
headers. Each map key is used as a header name and the value associated
with that key in the map is used as the header value.

If a single document appears on the source port, then document properties
on that document may be added as additional headers. For XML, HTML,
and text documents with a serialization document property having an
encoding key, a charset is appended to the created content-type header
of the HTTP request. Properties in the http://www.w3.org/ns/xproc-http
namespace will be added to the headers, using the local-name of the
property QName as the header name. These properties are only copied if
they are not specified in the header map. In other words, if the same header
name appears in both places, the value from the map is used and the value

39

2. The required steps

from the document properties is ignored. (Header names are case-
insensitive, so a case-insensitive comparison must be performed.) If multiple
documents appear on the source port, none of their properties are used in
the request headers.

The behavior of the p:http-request depends on the headers specified. In
particular:

content-type
If a content-type header is provided, it will be used. For a single
document request, this overrides the content type value of the
document. If the content type specified begins with “multipart/”, a
multipart request will be sent to the server.

It is a dynamic error (err:XD0079) if a supplied content-type is not a
valid media type of the form “type/subtype+ext” or “type/subtype”.

transfer-encoding
If a transfer-encoding header is provided, the request must be sent
with that encoding. It is a dynamic error (err:XC0131) if the processor
cannot support the requested encoding.

authorization
The authorization header is used to authenticate a request. If the auth
option is specified, any key or property that would have contributed a
header named “authorization” (irrespective of case) is ignored. The
authorization header is determined exclusively by the auth option
when it is present.

HTTP headers are case-insensitive but keys in maps are not; be careful when
specifying the request headers. It is a dynamic error (err:XC0127) if the
headers map contains two keys that are the same when compared in a case-
insensitive manner. (That is, when
fn:uppercase($key1) = fn:uppercase($key2).)

40

2. The required steps

auth
Many web services are only available to authenticated users, that is, to users
who have “logged in”. The auth option allows the pipeline author to specify
information that may be required to generate an “Authorization” header.
The standard values support HTTP “Basic” and “Digest” authentication, but
other authentication methods are allowed.

The following standard keys are defined:

username (xs:string)
The username.

password (xs:string)
The password associated with the username.

auth-method (xs:string)
The authentication method. Appropriate values for the “auth-method”
key are “Basic” or “Digest” but other values are allowed. If the
authentication method is “Basic” or “Digest”, authentication is
handled as per [RFC 2617]. The interpretation of values associated with
the “auth-method” key other than “Basic” or “Digest” is
implementation defined.

send-authorization (xs:boolean)
The “send-authorization” key can be used to attempt to allow the
request to avoid an authentication challenge. If the “send-
authorization” key is “true()”, and the authentication method
specified by the value associated with the “auth-method” key supports
generation of an “Authorization” header without a challenge, then the
header is generated and sent on the first request. If the “send-
authorization” key is absent or does not have the value “true”, the
first request is sent without an “Authorization” header.

41

2. The required steps

Other key value pairs in map “auth” are implementation defined. It is a
dynamic error (err:XC0123) if any key in the “auth” map is associated with a
value that is not an instance of the required type.

If the initial response to the request is an authentication challenge, the values
provided in the auth map and any relevant data from the challenge are used
to generate an “Authorization” header and the request is sent again. If that
authorization fails, the request is not retried.

It is a dynamic error (err:XC0003) if a “username” or a “password” key is
present without specifying a value for the “auth-method” key, if the
requested auth-method isn't supported, or the authentication challenge
contains an authentication method that isn't supported. All implementations
must support “Basic” and “Digest” authentication per [RFC 2617].

parameters
The parameter option can be used to provide values for fine tuning the
construction of the request and/or handling of the server response. A
number of parameters are defined in this specification. It is implementation
defined which other key/value pairs in the parameters option are
supported.

override-content-type (xs:string)
Ordinarily, the value of the content-type header provided in the
server response controls the interpretation of any body in the response.
If the “override-content-type” parameter is provided, then its value
is used to interpret the body. The content-type header that appears on
the report port is not changed. It is a dynamic error (err:XD0079) if a
supplied content-type is not a valid media type of the form “type/
subtype+ext” or “type/subtype”. It is a dynamic error (err:XC0030) if
the response body cannot be interpreted as requested (e.g.
application/json to override application/xml content).

42

2. The required steps

http-version (xs:string)
The http-version parameter indicates which version of HTTP must be
used for the request.

accept-multipart (xs:boolean)
If the accept-multipart parameter is present and explicitly has the
value false(), a dynamic error will be raised, if a multipart response is
received from the server. This feature is a convenience for pipeline
authors as it will raise an error when the multipart request is received,
rather than having the presence of a sequence raise an error further
along in the pipeline, or simply producing anomalous results. It is a
dynamic error (err:XC0125) if the key “accept-multipart” as the value
false() and a multipart response is detected.

override-content-encoding (xs:string)
If the “override-content-encoding” parameter is present, the
response will be treated as if the response contained a “content-
encoding” header with the specified value. The content-encoding
header that appears on the report port is not changed. It is a dynamic
error (err:XC0132) if the override content encoding cannot be
supported.

permit-expired-ssl-certificate (xs:boolean)
If “permit-expired-ssl-certificate” is true, then the processor
should not reject responses where the server provides an expired SSL
certificate.

permit-untrusted-ssl-certificate (xs:boolean)
If “permit-untrusted-ssl-certificate” is true, then the processor
should not reject response where the server provides an SSL certificate
which is not trusted, for example, because the certificate authority (CA)
is unknown.

43

2. The required steps

follow-redirect (xs:integer)
The “follow-redirect” parameter allows the pipeline author to
specify the step’s behaviour in the case of a redirect response. A value of
0 indicates that redirects are not to be followed, -1 indicates that
redirects are to be followed indefinitely, and a specific number indicates
the maximum number of redirects to follow. The default behaviour in
case of a redirect response is implementation defined.

timeout (xs:integer)
If a “timeout” is specified, it must be a non-negative integer. It controls
the time the XProc processor waits for the request to be answered. If a
value is given, it is taken as the number of seconds to wait for the
response to be delivered. If no response is received after that time, the
request is terminated and a status-code 408 is assumed.

fail-on-timeout (xs:boolean)
If “fail-on-timeout” is true, a dynamic error is raised if a 408
response is received (either as a consequence of setting a value for the
“timeout” parameter or as status code returned by a server). It is a
dynamic error (err:XC0078) if the value associated with the “fail-on-
timeout” is associated with true() and a HTTP status code 408 is
encountered. If “fail-on-timeout” is true, it prevents any dynamic
error with code C0126 resulting from the assert option to be raised for
request's timeout.

44

2. The required steps

Note
Please note that the “fail-on-timeout” parameter is
different from the “timeout” option on the p:http-
request step (see Controlling long running steps in XProc
3.0: An XML Pipeline Language). If the step does not
finish in the specified time, D0053 is raised. If the request
does not finish in time, and fail-on-timeout is true,
C0078 is raised. The actual times after which a timeout
is detected may also differ slightly.

status-only (xs:boolean)
If the “status-only” parameter is true, this indicates that the pipeline
author is only interested in the response code. An empty sequence is
always returned on the result port in this case. The implementation
may save resources by ignoring the response body. The map on the
report will contain the status code and an empty map for “headers”.

suppress-cookies (xs:boolean)
If the “suppress-cookies” parameter is true, the implementation must
not send any cookies with the request.

send-body-anyway (xs:boolean)
If the “send-body-anyway” parameter is true, and one or more
documents appear on the source port, a request body is constructed
from the documents and sent with the request, even if the semantics of
sending a body are not specified for the HTTP method in use.

It is a dynamic error (err:XC0124) if any key in the “parameters” map is
associated with a value that is not an instance of the required type.

45

2. The required steps

https://spec.xproc.org/3.0/xproc/#timeout
https://spec.xproc.org/3.0/xproc/
https://spec.xproc.org/3.0/xproc/

assert (xs:string)
The assert option can be used by pipeline authors to raise a dynamic error
if the response does not fulfill the expectations of the receiver. The option's
value (if present) is interpreted as an XPath expression which will be
executed using the map that appears on the report port as its context item.
If the effective boolean value of the expression is false(), a dynamic error is
raised. It is a dynamic error (err:XC0126) if the XPath expression in assert
evaluates to false. Implementations should provide an XML representation
of the map used as the context item with the error document to enable
pipelines to access the error's cause.

2.13.1. Construction of a multipart request

If more than one document appears on the source port, or if the specified
“content-type” header begins “multipart/”, a multipart request will be
constructed, per [RFC 1521]. The content type of the request is derived from the
“content-type” header:

• If the “content-type” header specifies a multipart content type, that value
will be used as the content type. If the header includes a boundary
parameter, that value will be used as the boundary. It is a dynamic
error (err:XC0203) if the specified boundary is not valid (for example, if it
begins with two hyphens “--”).

• If the “content-type” header is not specified, “multipart/mixed” will be
used.

• It is a dynamic error (err:XC0133) if more than one document appears on the
source port and a content-type header is present and the content type
specified is not a multipart content type.

46

2. The required steps

A multipart request must have a boundary marker, if one isn’t specified in the
content type, the implementation must construct one. It is implementation-defined
how a multipart boundary is constructed. Implementations are not required to
guarantee that the constructed value does not appear accidentally in the
multipart data. If it does, the request will be malformed; pipeline authors must
provide a boundary if they wish to assure that this cannot happen.

Each document in the sequence is serialized. If the document has a
“serialization” document property, its values are used to determine how
serialization is performed.

All of the document properties in the http://www.w3.org/ns/xproc-http
namespace will be added as headers for the part, using the local-name of the
property QName as the header name. In particular, this is how the “id”,
“description”, “disposition” and other multipart headers can be provided.

2.13.2. Managing a multipart response

When a multipart response is received, each part is interpreted according to it’s
content type and a pipeline document is constructed. Any additional headers
associated with the part are added to the document properties of the constructed
document.

The multipart response is the resulting sequence of documents.

Document properties

No document properties are preserved.

47

2. The required steps

2.14. p:identity
The p:identity step makes a verbatim copy of its input available on its output.

<p:declare-step type="p:identity">
 <p:input port="source" sequence="true" content-types="any"/>
 <p:output port="result" sequence="true" content-types="any"/>
</p:declare-step>

If the implementation supports passing PSVI annotations between steps, the
p:identity step must preserve any annotations that appear in the input.

Document properties

All document properties are preserved.

2.15. p:insert
The p:insert step inserts the insertion port's document into the source port's
document relative to the matching elements in the source port's document.

<p:declare-step type="p:insert">
 <p:input port="source" primary="true" content-types="xml html"/>
 <p:input port="insertion" sequence="true" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="match" as="xs:string" select="'/*'"/>
 <p:option name="position" values="('first-child','last-
child','before','after')" select="'after'"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if that pattern matches an attribute or a namespace node.
Multiple matches are allowed, in which case multiple copies of the insertion
documents will occur. If no elements match, then the document is unchanged.

48

2. The required steps

The value of the position option must be an NMTOKEN in the following list:

• “first-child” - the insertion is made as the first child of the match;

• “last-child” - the insertion is made as the last child of the match;

• “before” - the insertion is made as the immediate preceding sibling of the
match;

• “after” - the insertion is made as the immediate following sibling of the
match.

It is a dynamic error (err:XC0025) if the selection pattern matches anything other
than an element or a document node and the value of the position option is
“first-child” or “last-child”. It is a dynamic error (err:XC0024) if the
selection pattern matches a document node and the value of the position is
“before” or “after”.

As the inserted elements are part of the output of the step they are not
considered in determining matching elements. If an empty sequence appears on
the insertion port, the result will be the same as the source.

Document properties

All document properties on the source port are preserved. The document
properties on the insertion port are not preserved or present in the result
document.

49

2. The required steps

2.16. p:json-join
The p:json-join step joins the sequence of documents on port source into a
single JSON document (an array) appearing on port result. If the sequence on
port source is empty, the empty sequence is returned on port result.

<p:declare-step type="p:json-join">
 <p:input port="source" sequence="true" content-types="any"/>
 <p:output port="result" content-types="application/json"/>
 <p:option name="flatten-to-depth" as="xs:string?" select="'0'"/>
</p:declare-step>

The step inspects the documents on port source in turn to create the resulting
array:

• If the document under inspection is a JSON document representing an array,
the array is copied to the resulting array according to the setting of option
flatten-to-depth.

• For every other type of JSON document, for XML documents, HTML
documents, or text documents, their XDM representation is appended to the
resulting array.

• It is implementation defined if p:json-join is able to process document types
not mentioned yet, i.e. types of binary documents. If a processor supports a
given type of documents, an entry is created as described above. It is a
dynamic error (err:XC0111) if a document of an unsupported document type
appears on port source of p:json-join.

The option flatten-to-depth controls whether and to which depth members of
an array appearing on port source are flattened. It is a dynamic
error (err:XC0119) if flatten is neither “unbounded”, nor a string that may be
cast to a non-negative integer. An integer value of 0, which is the default, means
that no flattening takes place, so the array appearing on port source will be

50

2. The required steps

contained as an array in the resulting array. An integer value of 1 means that an
array on port source is flattened, i.e. the members of that array will appear as
individual members in the resulting array. Any value greater than 1 means that
the flattening is applied recursively to arrays in arrays up to the given depth. A
value of “unbounded” means that all arrays in arrays will be flattened. As a
consequence, the resulting array appearing on port result will not have any
arrays as members.

Document properties

No document properties are preserved. The joined document has no base-uri.

2.17. p:json-merge
The p:json-merge step merges the sequence of appearing on port source into a
single JSON object appearing on port result. If the sequence on port source is
empty, the empty sequence is returned on port result.

<p:declare-step type="p:json-merge">
 <p:input port="source" sequence="true" content-types="any"/>
 <p:output port="result" content-types="application/json"/>
 <p:option name="duplicates" values="('reject', 'use-first', 'use-
last', 'use-any', 'combine')" select="'use-first'"/>
 <p:option name="key" as="xs:string" select="'concat("_",$p:index)'"/>
</p:declare-step>

The step inspects the documents on port source in turn to create the resulting
map:

• If the document under inspection is a JSON document representing a map,
all key-value pairs are copied into the result map unless this map already
contains an entry with the given key. In this case the value of option
duplicates determines the policy for handling duplicate keys as specified

51

2. The required steps

for function map:merge in [XPath and XQuery Functions and Operators 3.1].
It is a dynamic error (err:XC0106) if duplicate keys are encountered and
option duplicates has value “reject”.

• For every other type of JSON document, for XML documents, HTML
documents, or text documents a new key-value pair is created and put into
the resulting map. The key is created by evaluating the XPath expression in
option key with the inspected document as context item. If the evaluation
result is a single atomic value, it is taken as key. If the evaluation result is a
node, its string value is taken as key. It is a dynamic error (err:XC0110) if the
evaluation of the XPath expression in option key for a given item returns
either a sequence, an array, a map, or a function. Duplicate keys are handled
as described above. The XDM representation of the inspected document is
taken as value of the key-value pair.

• It is implementation defined if p:json-merge is able to process document
types not mentioned yet, i.e. types of binary documents. If a processor
supports a given type of documents, the key-value pair is created as
described above. It is a dynamic error (err:XC0107) if a document of a not
supported document type appears on port source of p:json-merge.

An implementation must bind the variable “p:index” in the static context of
each evaluation of the XPath expression to the position of the document in the
sequence of documents on port source, starting with “1”.

Document properties

No document properties are preserved. The merged document has no base-uri.

52

2. The required steps

2.18. p:label-elements
The p:label-elements step generates a label for each matched element and
stores that label in the specified attribute.

<p:declare-step type="p:label-elements">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="attribute" as="xs:QName" select="'xml:id'"/>
 <p:option name="label" as="xs:string"
select="'concat("_",$p:index)'"/>
 <p:option name="match" as="xs:string" select="'*'"/>
 <p:option name="replace" as="xs:boolean" select="true()"/>
</p:declare-step>

The value of the label option is an XPath expression used to generate the value
of the attribute label.

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if that expression matches anything other than element nodes.

The value of the replace must be a boolean value and is used to indicate
whether existing attribute values are replaced.

This step operates by generating attribute labels for each element matched. For
every matched element, the expression is evaluated with the context node set to
the matched element. An attribute is added to the matched element using the
attribute name is specified the attribute option and the string value of result of
evaluating the expression. If the attribute already exists on the matched element,
the value is replaced with the string value only if the replace option has the
value of true.

If this step is used to add or change the value of an attribute named “xml:base”,
the base URI of the element must also be amended accordingly.

53

2. The required steps

An implementation must bind the variable “p:index” in the static context of
each evaluation of the XPath expression to the position of the element in the
sequence of matched elements. In other words, the first element (in document
order) matched gets the value “1”, the second gets the value “2”, the third, “3”,
etc.

The result of the p:label-elements step is the input document with the attribute
labels associated with matched elements. All other non-matching content
remains the same.

Document properties

All document properties are preserved.

2.19. p:load
The p:load step has no inputs but produces as its result a document specified by
an IRI.

<p:declare-step type="p:load">
 <p:output port="result" content-types="any"/>
 <p:option name="href" required="true" as="xs:anyURI"/>
 <p:option name="parameters" as="map(xs:QName,item()*)?"/>
 <p:option name="content-type" as="xs:string?"/>
 <p:option name="document-properties" as="map(xs:QName, item()*)?"/>
</p:declare-step>

If the option is relative, it is made absolute against the base URI of the element on
which it is specified (p:with-option or the step in case of a syntactic shortcut
value). If the href is relative, it is made absolute against the base URI of the
element on which it is specified (p:with-option or p:load in the case of a
syntactic shortcut value). It is a dynamic error (err:XD0064) if the base URI is not
both absolute and valid according to [RFC 3986].

54

2. The required steps

The document identified by the href URI is loaded and returned. If the URI
protocol supports redirection, then redirects must be followed.

It is a dynamic error (err:XD0011) if the resource referenced by a p:load element
does not exist or cannot be accessed.

The behavior of this step depends on the content type of the document loaded.
The content type of a document is determined as follows:

1. If a content-type property is specified in document-properties or
content-type is present, then the document must be interpreted according
to that content type. It is a dynamic error (err:XD0079) if a supplied content-
type is not a valid media type of the form “type/subtype+ext” or “type/
subtype”. It is a dynamic error (err:XD0062) if the content-type is specified
and the document-properties has a “content-type” that is not the same.

2. If the document is retrieved with a URI protocol that specifies a content type
(for example, http:), then the document must be interpreted according to
that content type.

3. In the absence of an explicit type, the content type is implementation-defined.

The parameters map contains additional, optional parameters that may
influence the way that content is loaded. The interpretation of this map varies
according to the content type. Parameter names that are in no namespace are
treated as strings using only the local-name where appropriate.

Broadly speaking, there are five categories of data that might be loaded: XML,
text, JSON, HTML, and “other” binary data.

2.19.1. Loading XML data

For an XML media type, the content is loaded and parsed as XML.

55

2. The required steps

It is a dynamic error (err:XD0049) if the loaded content is not a well-formed XML
document.

If the dtd-validate parameter is true, then DTD validation must be performed
when parsing the document. It is a dynamic error (err:XD0023) if a DTD
validation is performed and either the document is not valid or no DTD is found.
It is a dynamic error (err:XD0043) if the dtd-validate parameter is true and the
processor does not support DTD validation.

Additional XML parameters are implementation-defined.

2.19.2. Loading text data

For a text media type, the content is loaded as a text document. (A text document
is an XPath data model document consisting of a single text node.)

It is a dynamic error (err:XD0060) if the content-type specifies an encoding,
which is not supported by the processor.

Text parameters are implementation-defined.

2.19.3. Loading JSON data

For a JSON media type, the content is loaded and parsed as JSON.

The parameters specified for the fn:parse-json function in [XPath and XQuery
Functions and Operators 3.1] must be supported. Additional JSON parameters
are implementation-defined.

It is a dynamic error (err:XD0057) if the loaded content does not conform to the
JSON grammar, unless the parameter liberal is true and the processor chooses
to accept the deviation.

56

2. The required steps

It is a dynamic error (err:XD0058) if the parameter duplicates is reject and the
value of loaded content contains a JSON object with duplicate keys.

It is a dynamic error (err:XD0059) if the parameter map contains an entry whose
key is defined in the specification of fn:parse-json and whose value is not
valid for that key, or if it contains an entry with the key fallback when the
parameter escape with true() is also present.

2.19.4. Loading HTML data

For an HTML media type, the content is loaded and parsed into an XPath data
model document that contains a tree of elements, attributes, and other nodes.

The precise way in which HTML documents are parsed into the XPath data
model is implementation-defined.

It is a dynamic error (err:XD0078) if the loaded document cannot be represented
as an HTML document in the XPath data model.

HTML parameters are implementation-defined.

2.19.5. Loading binary data

An XProc processor may load other, arbitrary data types. How a processor
interprets other media types is implementation-defined.

Parameters for other media types are implementation-defined.

57

2. The required steps

Document properties

The properties specified in document-properties are applied. If the properties
do not specify a base-uri, the base-uri property will reflect the base URI of the
loaded document.

2.20. p:make-absolute-uris
The p:make-absolute-uris step makes an element or attribute's value in the
source document an absolute IRI value in the result document.

<p:declare-step type="p:make-absolute-uris">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="match" required="true" as="xs:string"/>
 <p:option name="base-uri" as="xs:anyURI?"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if the pattern matches anything other than element or
attribute nodes.

The value of the base-uri option must be an anyURI. It is interpreted as an IRI
reference. If it is relative, it is made absolute against the base URI of the element
on which it is specified (p:with-option or p:make-absolute-uris in the case
of a syntactic shortcut value). It is a dynamic error (err:XD0064) if the base URI is
not both absolute and valid according to [RFC 3986].

For every element or attribute in the input document which matches the
specified pattern, its XPath string-value is resolved against the specified base URI
and the resulting absolute IRI is used as the matched node's entire contents in the
output.

58

2. The required steps

The base URI used for resolution defaults to the matched attribute's element or
the matched element's base URI unless the base-uri option is specified. When
the base-uri option is specified, the option value is used as the base URI
regardless of any contextual base URI value in the document. This option value
is resolved against the base URI of the p:option element used to set the option.

If the IRI reference specified by the base-uri option on p:make-absolute-uris
is absent and the input document has no base URI, the results are implementation-
dependent.

Document properties

All document properties are preserved.

2.21. p:namespace-delete
The p:namespace-delete step deletes all of the namespaces identified by the
specified prefixes from the document appearing on port source.

<p:declare-step type="p:namespace-delete">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="prefixes" required="true" as="xs:string"/>
</p:declare-step>

The value of option prefixes is taken as a space separated list of prefixes. It is a
dynamic error (err:XC0108) if any prefix is not in-scope at the point where the
p:namespace-delete occurs.

For any prefix the associated namespace is removed from the elements and
attributes in the document appearing on port source. The respective elements or
attributes in the document appearing on port result will be in no namespace.

59

2. The required steps

It is a dynamic error (err:XC0109) if a namespace is to be removed from an
attribute and the element already has an attribute with the resulting name.

Document properties

All document properties are preserved.

2.22. p:namespace-rename
The p:namespace-rename step renames any namespace declaration or use of a
namespace in a document to a new IRI value.

<p:declare-step type="p:namespace-rename">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="from" as="xs:anyURI?"/>
 <p:option name="to" as="xs:anyURI?"/>
 <p:option name="apply-to" select="'all'"
values="('all','elements','attributes')"/>
</p:declare-step>

The value of the from option must be an anyURI. It should be either empty or
absolute, but will not be resolved in any case.

The value of the to option must be an anyURI. It should be empty or absolute,
but will not be resolved in any case.

The value of the apply-to option must be one of “all”, “elements”, or
“attributes”. If the value is “elements”, only elements will be renamed, if the
value is “attributes”, only attributes will be renamed, if the value is “all”,
both elements and attributes will be renamed.

It is a dynamic error (err:XC0014) if the XML namespace (http://
www.w3.org/XML/1998/namespace) or the XMLNS namespace (http://

60

2. The required steps

www.w3.org/2000/xmlns/) is the value of either the from option or the to
option.

If the value of the from option is the same as the value of the to option, the input
is reproduced unchanged on the output. Otherwise, namespace bindings,
namespace attributes and element and attribute names are changed as follows:

• Namespace bindings: If the from option is present and its value is not the
empty string, then every binding of a prefix (or the default namespace) in
the input document whose value is the same as the value of the from option
is

◦ replaced in the output with a binding to the value of the to option,
provided it is present and not the empty string;

◦ otherwise (the to option is not specified or has an empty string as its
value) absent from the output.

If the from option is absent, or its value is the empty string, then no bindings
are changed or removed.

• Elements and attributes: If the from option is present and its value is not the
empty string, for every element and attribute, as appropriate, in the input
whose namespace name is the same as the value of the from option, in the
output its namespace name is

◦ replaced with the value of the to option, provided it is present and not
the empty string;

◦ otherwise (the to option is not specified or has an empty string as its
value) changed to have no value.

61

2. The required steps

If the from option is absent, or its value is the empty string, then for every
element and attribute, as appropriate, whose namespace name has no value,
in the output its namespace name is set to the value of the to option.

It is a dynamic error (err:XC0092) if as a consequence of changing or
removing the namespace of an attribute the attribute's name is not unique on
the respective element.

• Namespace attributes: If the from option is present and its value is not the
empty string, for every namespace attribute in the input whose value is the
same as the value of the from option, in the output

◦ the namespace attribute's value is replaced with the value of the to
option, provided it is present and not the empty string;

◦ otherwise (the to option is not specified or has an empty string as its
value) the namespace attribute is absent.

Note
The apply-to option is primarily intended to make it possible to
avoid renaming attributes when the from option specifies no
namespace, since many attributes are in no namespace.

Care should be taken when specifying no namespace with the to
option. Prefixed names in content, for example QNames and
XPath expressions, may end up with no appropriate namespace
binding.

62

2. The required steps

Document properties

All document properties are preserved.

2.23. p:pack
The p:pack step merges two document sequences in a pair-wise fashion.

<p:declare-step type="p:pack">
 <p:input port="source" content-types="text xml html" sequence="true"
primary="true"/>
 <p:input port="alternate" sequence="true" content-types="text xml
html"/>
 <p:output port="result" sequence="true" content-types="application/
xml"/>
 <p:option name="wrapper" required="true" as="xs:QName"/>
</p:declare-step>

The step takes each pair of documents, in order, one from the source port and
one from the alternate port, wraps them with a new element node whose
QName is the value specified in the wrapper option, and writes that element to
the result port as a document.

If the step reaches the end of one input sequence before the other, then it simply
wraps each of the remaining documents in the longer sequence.

Note
In the common case, where the document element of a document
in the result sequence has two element children, any comments,
processing instructions, or white space text nodes that occur
between them may have come from either of the input
documents; this step does not attempt to distinguish which one.

63

2. The required steps

Document properties

No document properties are preserved. The result documents do not have a
base-uri property.

2.24. p:rename
The p:rename step renames elements, attributes, or processing-instruction
targets in a document.

<p:declare-step type="p:rename">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="match" as="xs:string" select="'/*'"/>
 <p:option name="new-name" required="true" as="xs:QName"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if the pattern matches anything other than element, attribute
or processing instruction nodes.

Each element, attribute, or processing-instruction in the input matched by the
selection pattern specified in the match option is renamed in the output to the
name specified by the new-name option.

If the match option matches an attribute and if the element on which it occurs
already has an attribute whose expanded name is the same as the expanded
name of the specified new-name, then the results is as if the current attribute
named “new-name” was deleted before renaming the matched attribute.

With respect to attributes named “xml:base”, the following semantics apply:
renaming an from “xml:base” to something else has no effect on the underlying
base URI of the element; however, if an attribute is renamed from something else
to “xml:base”, the base URI of the element must also be amended accordingly.

64

2. The required steps

If the pattern matches processing instructions, then it is the processing
instruction target that is renamed. It is a dynamic error (err:XC0013) if the pattern
matches a processing instruction and the new name has a non-null namespace.

Document properties

All document properties are preserved.

2.25. p:replace
The p:replace step replaces matching nodes in its primary input with the top-
level node(s) of the replacement port's document.

<p:declare-step type="p:replace">
 <p:input port="source" primary="true" content-types="xml html"/>
 <p:input port="replacement" content-types="text xml html"/>
 <p:output port="result" content-types="text xml html"/>
 <p:option name="match" required="true" as="xs:string"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if that pattern matches an attribute or a namespace nodes.
Multiple matches are allowed, in which case multiple copies of the replacement
document will occur.

Every node in the primary input matching the specified pattern is replaced in the
output by the top-level node(s) of the replacement document. Only non-nested
matches are replaced. That is, once a node is replaced, its descendants cannot be
matched.

If the document node is matched and port replacement contains a text
document, the entire document is replaced by the text node. What appears on
port result is a text document with the text node wrapped in a document node.

65

2. The required steps

Document properties

If the resulting document contains exactly one text node, the content-type
property is changed to text/plain and the serialization property is
removed, while all other document properties are preserved. For other document
types, all document properties are preserved.

2.26. p:set-attributes
The p:set-attributes step sets attributes on matching elements.

<p:declare-step type="p:set-attributes">
 <p:input port="source" primary="true" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="match" as="xs:string" select="'/*'"/>
 <p:option name="attributes" required="true" as="map(xs:QName,
xs:anyAtomicType)"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if that pattern matches anything other than element nodes.

A new attribute is created for each entry in the map appearing on the
attributes option. The attribute name is taken from the entry's key while the
attribute value is taken from the string value of the entry's value.

If an attribute with the same name as one of the attributes to be created already
exists, the value specified on the attributes option is used. The result port of
this step produces a copy of the source port's document with the matching
elements' attributes modified.

The matching elements are specified by the selection pattern in the match option.
All matching elements are processed. If no elements match, the step will not
change any elements.

66

2. The required steps

If the attributes taken from the attributes use namespaces, prefixes, or prefixes
bound to different namespaces, the document produced on the result output
port will require namespace fixup.

If an attribute named xml:base is added or changed, the base URI of the element
must also be amended accordingly.

Document properties

All document properties are preserved.

2.27. p:set-properties
The p:set-properties step sets document properties on the source document.

<p:declare-step type="p:set-properties">
 <p:input port="source" content-types="any"/>
 <p:output port="result" content-types="any"/>
 <p:option name="properties" required="true"
as="map(xs:QName,item()*)"/>
 <p:option name="merge" select="true()" as="xs:boolean"/>
</p:declare-step>

The document properties of the document on the source port are augmented
with the values specified in the properties option. The document produced on
the result port has the same representation but the adjusted property values.

If the merge option is true, then the supplied properties are added to the existing
properties, overwriting already existing values for a given key. If it is false, the
document’s properties are replaced by the new set.

67

2. The required steps

It is a dynamic error (err:XD0070) if a value is assigned to the serialization
document property that cannot be converted into map(xs:QName, item()*)
according to the rules in section “QName handling” of [XProc 3.0].

It is a dynamic error (err:XC0069) if the properties map contains a key equal to
the string “content-type”.

If the properties map contains a key equal to the string “base-uri” the
associated value is taken as the new base URI of the resulting document. It is a
dynamic error (err:XD0064) if the base URI is not both absolute and valid
according to [RFC 3986].

Document properties

If merge is true, document properties not overridden by settings in the
properties map are preserved, otherwise the resulting document has only the
content-type property and the properties specified in the properties map. In
particular, if merge is false, the base-uri property will not be preserved. This
means that the resulting document will not have a base URI if the properties
map does not contain a base-uri entry.

2.28. p:sink
The p:sink step accepts a sequence of documents and discards them. It has no
output.

<p:declare-step type="p:sink">
 <p:input port="source" content-types="any" sequence="true"/>
</p:declare-step>

68

2. The required steps

Document properties

Not applicable.

2.29. p:split-sequence
The p:split-sequence step accepts a sequence of documents and divides it into
two sequences.

<p:declare-step type="p:split-sequence">
 <p:input port="source" content-types="any" sequence="true"/>
 <p:output port="matched" sequence="true" primary="true" content-
types="any"/>
 <p:output port="not-matched" sequence="true" content-types="any"/>
 <p:option name="initial-only" as="xs:boolean" select="false()"/>
 <p:option name="test" required="true" as="xs:string"/>
</p:declare-step>

The value of the test option must be an XPathExpression.

The XPath expression in the test option is applied to each document in the input
sequence. If the effective boolean value of the expression is true, the document is
copied to the matched port; otherwise it is copied to the not-matched port.

If the initial-only option is true, then when the first document that does not
satisfy the test expression is encountered, it and all the documents that follow it are
written to the not-matched port. In other words, it only writes the initial series
of matched documents (which may be empty) to the matched port. All other
documents are written to the not-matched port, irrespective of whether or not
they match.

The XPath context for the test option changes over time. For each document
that appears on the source port, the expression is evaluated with that document
as the context document. The context position (position()) is the position of
that document within the sequence and the context size (last()) is the total

69

2. The required steps

number of documents in the sequence. It is a dynamic error (err:XC0150) if
evaluating the XPath expression in option test on a context document results in
an error.

Note
In principle, this component cannot stream because it must
buffer all of the input sequence in order to find the context size.
In practice, if the test expression does not use the last()
function, the implementation can stream and ignore the context
size.

If the implementation supports passing PSVI annotations between steps, the
p:split-sequence step must preserve any annotations that appear in the input.

Document properties

All document properties are preserved.

2.30. p:store
The p:store step stores (a possibly serialized version of) its input to a URI. It
outputs a reference to the location of the stored document on the result-uri
port. Aside from these side-effects, it behaves like a p:identity step, copying its
input to the result port.

70

2. The required steps

<p:declare-step type="p:store">
 <p:input port="source" content-types="any"/>
 <p:output port="result" content-types="any" primary="true"/>
 <p:output port="result-uri" content-types="application/xml"/>
 <p:option name="href" required="true" as="xs:anyURI"/>
 <p:option name="serialization" as="map(xs:QName,item()*)?"/>
</p:declare-step>

The value of the href option must be an anyURI. If it is relative, it is made
absolute against the base URI of the element on which it is specified (p:with-
option or p:store in the case of a syntactic shortcut value).

The step attempts to store the document to the specified URI. If the URI scheme
“file:” is supported, the processor should try to create all non existing folders
in the URI’s path. It is a dynamic error (err:XC0050) if the URI scheme is not
supported or the step cannot store to the specified location.

The output of this step on the result-uri port is a document containing a single
c:result element whose content is the absolute URI of the document stored by
the step.

The serialization option is provided to control the serialization of content
when it is stored. If the document to be stored has a “serialization” property, the
serialization is controlled by the merger of the two maps where the entries in the
“serialization” property take precedence. Serialization is described in [XProc 3.0].

Document properties

All document properties are preserved.

71

2. The required steps

2.31. p:string-replace
The p:string-replace step matches nodes in the document provided on the
source port and replaces them with the string result of evaluating an XPath
expression.

<p:declare-step type="p:string-replace">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="text xml html"/>
 <p:option name="match" required="true" as="xs:string"/>
 <p:option name="replace" required="true" as="xs:string"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern.

The value of the replace option must be an XPathExpression.

The matched nodes are specified with the selection pattern in the match option.
For each matching node, the XPath expression provided by the replace option is
evaluated with the matching node as the XPath context node. The string value of
the result is used in the output. Nodes that do not match are copied without
change.

If the expression given in the match option matches an attribute, the string value
of the replace expression is used as the new value of the attribute in the output.
If the attribute is named “xml:base”, the base URI of the element must also be
amended accordingly.

If the document node is matched, the entire document is replaced by the string
value of the replace expression. What appears on port result is a text
document with the text node wrapped in a document node.

If the expression matches any other kind of node, the entire node (and not just its
contents) is replaced by the string value of the replace expression.

72

2. The required steps

Document properties

If the resulting document contains exactly one text node, the content-type
property is changed to text/plain and the serialization property is
removed, while all other document properties are preserved. For other document
types, all document properties are preserved.

2.32. p:text-count
The p:text-count step counts the number of lines in a text document and
returns a single XML document containing that number.

<p:declare-step type="p:text-count">
 <p:input port="source" primary="true" sequence="false" content-
types="text"/>
 <p:output port="result" primary="true" sequence="false" content-
types="application/xml"/>
</p:declare-step>

The p:text-count step counts the number of lines in the text document
appearing on its source port. It returns on its result port an XML document
containing a single c:result element whose contents is the string representing
this count.

Lines are identified as described in XML, 2.11 End-of-Line Handling. For the
purpose of identifying lines, if the very last character in the text document is a
newline (
), that newline is ignored. (It is not a separator between that line
and a following line that contains no characters.)

Document properties

No document properties are preserved. The count document does not have a
base-uri property.

73

2. The required steps

https://www.w3.org/TR/xml/#sec-line-ends

2.33. p:text-head
The p:text-head step returns lines from the beginning of a text document.

<p:declare-step type="p:text-head">
 <p:input port="source" primary="true" sequence="false" content-
types="text"/>
 <p:output port="result" primary="true" sequence="false" content-
types="text"/>
 <p:option name="count" required="true" as="xs:integer"/>
</p:declare-step>

The p:text-head step returns on its result port lines from the text document
that appears on its source port:

• If the count option is positive, the p:text-head step returns the first count
lines

• If the count option is zero, the p:text-head step returns all lines

• If the count option is negative, the p:text-head step returns all lines except
the first count lines

Lines are identified as described in XML, 2.11 End-of-Line Handling. All lines
returned by p:text-head are terminated with a single newline (
).

Document properties

All document properties are preserved.

2.34. p:text-join
The p:text-join step concatenates text documents.

74

2. The required steps

https://www.w3.org/TR/xml/#sec-line-ends

<p:declare-step type="p:text-join">
 <p:input port="source" sequence="true" content-types="text"/>
 <p:output port="result" content-types="text"/>
 <p:option name="separator" as="xs:string?"/>
 <p:option name="prefix" as="xs:string?"/>
 <p:option name="suffix" as="xs:string?"/>
 <p:option name="override-content-type" as="xs:string?"/>
</p:declare-step>

The p:text-join step concatenates the text documents appearing on its source
port into a single document on its result port. The documents will be
concatenated in order of appearance.

• When the separator option is specified, its value will be inserted in
between adjacent documents.

• When the prefix option is specified, the document appearing on the result
port will always start with its value (also when there are no documents on
the source port).

• When the suffix option is specified, the document appearing on the result
port will always end with its value (also when there are no documents on
the source port).

When the override-content-type option is specified, the document appearing
on the port result will have this media type as part of its document properties.
It is a dynamic error (err:XD0079) if a supplied content-type is not a valid media
type of the form “type/subtype+ext” or “type/subtype”. It is a dynamic
error (err:XC0001) if the value of option override-content-type is not a text
media type.

Concatenating text documents does not require identifying individual lines in
each document, consequently no special end-of-line handling is performed.

75

2. The required steps

Document properties

No document properties are preserved. The joined document has no base-uri
property.

2.35. p:text-replace
The p:text-replace step replaces all occurrences of substrings in a text
document that match a supplied regular expression with a given replacement
string.

<p:declare-step type="p:text-replace">
 <p:input port="source" primary="true" sequence="false" content-
types="text"/>
 <p:output port="result" primary="true" sequence="false" content-
types="text"/>
 <p:option name="pattern" required="true" as="xs:string"/>
 <p:option name="replacement" required="true" as="xs:string"/>
 <p:option name="flags" as="xs:string?"/>
</p:declare-step>

The p:text-replace step replaces all occurrences of substrings in the text
document appearing on its source port that match a supplied regular expression
with a given replacement string. The result is returned (as another text
document) on its result port.

This step is a convenience wrapper around the XPath fn:replace function to
ease text replacements in the document flow of a pipeline.

The pattern, replacement and flags options are specified the same as the
parameters with the same names of the fn:replace function. The pattern
option must be a regular expression as specified in [XPath and XQuery Functions
and Operators 3.1], section 7.61 “Regular Expression Syntax”. It is a dynamic
error (err:XC0147) if the specified value is not a valid XPath regular expression.

76

2. The required steps

https://www.w3.org/TR/xpath-functions-31/#func-replace
https://www.w3.org/TR/xpath-functions-31/#func-replace

Replacing strings in text documents does not require identifying individual lines
in each document, consequently no special end-of-line handling is performed.

Document properties

All document properties are preserved.

2.36. p:text-sort
The p:text-sort step sorts lines in a text document.

<p:declare-step type="p:text-sort">
 <p:input port="source" primary="true" sequence="false" content-
types="text"/>
 <p:output port="result" primary="true" sequence="false" content-
types="text"/>
 <p:option name="sort-key" as="xs:string" select="'.'"/>
 <p:option name="order" as="xs:string" select="'ascending'"
values="('ascending', 'descending')"/>
 <p:option name="case-order" as="xs:string?" values="('upper-first',
'lower-first')"/>
 <p:option name="lang" as="xs:language?"/>
 <p:option name="collation" as="xs:string" select="'https://www.w3.org/
2005/xpath-functions/collation/codepoint'"/>
 <p:option name="stable" as="xs:boolean" select="true()"/>
</p:declare-step>

The p:text-sort step sorts the lines in the text document appearing on its
source port and returns the result as another text document on its result port.
The sort key is obtained by applying the XPath expression in sort-key to each
line in turn.

• The sort-key is used to obtain a sort key for each of the lines in the
document appearing on source. The context item is the line as an instance
of xs:string, the context position is the number of the line in the

77

2. The required steps

document on port source, the context size is the number of lines in this
document. It is a dynamic error (err:XC0098) if a dynamic XPath error
occurred while applying sort-key to a line. It is a dynamic error (err:XC0099)
if the result of applying sort-key to a given line results in a sequence with
more than one item.

• The order option defines whether the lines are processed in ascending or
descending order. Its value must be one of ascending or descending. The
default is ascending.

• The case-order option defines whether upper-case letters are to be collated
before or after lower-case letters. Its value must be one of upper-first or
lower-first. The default is language-dependent.

• The lang option defines the language whose collating conventions are to be
used. The default depends on the processing environment. Its value must be
a valid language code (e.g. en-EN).

• The collation option identifies how strings are to be compared with each
other. Its value must be a valid collation URI. The only collation XProc
processors must support is the Unicode Codepoint Collation http://
www.w3.org/2005/xpath-functions/collation/codepoint. This is also
its default. Support for other collations is implementation-defined.

• If the stable option is set to false this indicates that there is no
requirement to retain the original order of items that have equal values for
all the sort keys.

Lines are identified as described in XML, 2.11 End-of-Line Handling. For the
purpose of identifying lines, if the very last character in the text document is a
newline (
), that newline is ignored. (It is not a separator between that line
and a following line that contains no characters.) All lines returned by p:text-
sort are terminated with a single newline (
).

78

2. The required steps

https://www.w3.org/2005/xpath-functions/collation/codepoint/
https://www.w3.org/2005/xpath-functions/collation/codepoint/
https://www.w3.org/TR/xml/#sec-line-ends

The sort process performed by this step is the same as described in The xsl:sort
Element. Options lang and case-order are only taken into consideration if no
value is selected for option collation.

Document properties

All document properties are preserved.

2.37. p:text-tail
The p:text-tail step returns lines from the end of a text document.

<p:declare-step type="p:text-tail">
 <p:input port="source" primary="true" sequence="false" content-
types="text"/>
 <p:output port="result" primary="true" sequence="false" content-
types="text"/>
 <p:option name="count" required="true" as="xs:integer"/>
</p:declare-step>

The p:text-tail step returns on its result port lines from the text document
that appears on its source port:

• If the count option is positive, the p:text-tail step returns the last count
lines

• If the count option is zero, the p:text-tail step returns all lines

• If the count option is negative, the p:text-tail step returns all lines except
the last count lines

Lines are identified as described in XML, 2.11 End-of-Line Handling. All lines
returned by p:text-tail are terminated with a single newline (
).

79

2. The required steps

https://www.w3.org/TR/xslt-30/#xsl-sort
https://www.w3.org/TR/xslt-30/#xsl-sort
https://www.w3.org/TR/xml/#sec-line-ends

Document properties

All document properties are preserved.

2.38. p:unarchive
The p:unarchive step outputs on its result port specific entries in an archive
(for instance from a zip file).

<p:declare-step type="p:unarchive">
 <p:input port="source" primary="true" content-types="any"
sequence="false"/>
 <p:output port="result" primary="true" content-types="any"
sequence="true"/>
 <p:option name="include-filter" as="xs:string*"/>
 <p:option name="exclude-filter" as="xs:string*"/>
 <p:option name="format" as="xs:QName?"/>
 <p:option name="parameters" as="map(xs:QName, item()*)?"/>
 <p:option name="relative-to" as="xs:anyURI?"/>
 <p:option name="override-content-types"
as="array(array(xs:string))?"/>
</p:declare-step>

The meaning and interpretation of the p:unarchive step's options is as follows:

• The format of the archive is determined as follows:

◦ If the format option is specified, this determines the format of the
archive. Implementations must support the [ZIP] format, specified with
the value zip. It is implementation-defined what other formats are
supported.

◦ If no format option is specified or if its value is the empty sequence, the
archive's format will be determined by the step, using the content-
type document-property of the document on the source port and/or
by inspecting its contents. It is implementation-defined how the step

80

2. The required steps

determines the archive's format. Implementations should recognize
archives in [ZIP] format.

◦ It is a dynamic error (err:XC0085) if the format of the archive does not
match the specified format, cannot be understood, determined and/or
processed.

• The parameters option can be used to supply parameters to control the
unarchiving. The semantics of the keys and the allowed values for these
keys are implementation-defined. It is a dynamic error (err:XC0079) if the map
parameters contains an entry whose key is defined by the implementation
and whose value is not valid for that key.

• If present, the value of the include-filter or exclude-filter option
must be a sequence of strings, each one representing a regular expressions as
specified in [XPath and XQuery Functions and Operators 3.1], section 7.61
“Regular Expression Syntax”. It is a dynamic error (err:XC0147) if a
specified value is not a valid XPath regular expression.

If neither the include-filter option nor the exclude-filter option is
specified, the p:unarchive step outputs on its result port all entries in the
archive.

If the include-filter option or the exclude-filter option is specified,
the p:archive step outputs on the result port the entries from the archive
that conform to the following rules:

◦ If any include-filter pattern matches an archive entry's name, the
entry is included in the output.

◦ If any exclude-filter pattern matches an archive entry's name, the
entry is excluded in the output.

81

2. The required steps

◦ If both options are provided, the include filter is processed first, then the
exclude filter.

◦ Names of entries in archives are always relative names. For instance, the
name of a file called xyz.xml in a specs subdirectory in an archive is
called in full specs/xyz.xml (and not /specs/xyz.xml).

As a result: an item is included if it matches (at least) one of the include-
filter values and none of the exclude-filter values.

The regular expressions specified in the include-filter and exclude-
filter options will be matched against the path of the entry in the archive.
The matching is done unanchored: it is a match if the regular expression
matches part of the entry's path. Informally: matching behaves like applying
the XPath matches#2 function, like in matches($path-in-archive,
$regular-expression).

Note
Depending on how archives are constructed, the path of an
entry in an archive can be with or without a leading slash.
Usually it will be without. For archives constructed by
p:archive no leading slash will be present.

• The relative-to option, when present, is used in creating the base URI of
the unarchived documents. If the option is relative, it is made absolute
against the base URI of the element on which it is specified (p:with-option
or the step in case of a syntactic shortcut value).

• The override-content-types option can be used to partially override the
content-type determination mechanism, as described in Section 2.4.1,
“Overriding content types”.

82

2. The required steps

The base URI of an unarchived document appearing on the result port is:

• If the relative-to option is present: Function p:urify() is called with the
value of this option as second parameter ($basedir) and with the relative
path of this document as it was in the archive as first parameter

• If the relative-to option is not present: Function p:urify()is called with
the value of the base URI of the archive appended with a “/” as second
parameter ($baseDir) and the relative path of this document as it was in the
archive as first parameter

It is a dynamic error (err:XC0120) if the relative-to option is not present and
the document on the source port does not have a base URI. It is a dynamic
error (err:XD0064) if the option is not a valid URI according to [RFC 3986].

For instance, the base URI of an unarchived file called xyz.xml that resided in
the specs subdirectory in an archive with base URI file:///a/b/c.zip will
become:

• With the relative-to option set to file:///x/y/z: file:///x/y/z/
specs/xyz.xml

• Without a relative-to option set: file:///a/b/c.zip/specs/xyz.xml

Document properties

No document properties are preserved. The base-uri property of each
unarchived document is reflective of the base URI of the document.

83

2. The required steps

2.39. p:uncompress
The p:uncompress step expects on its source port a compressed document. It
outputs an uncompressed version of this on its result port.

<p:declare-step type="p:uncompress">
 <p:input port="source" primary="true" content-types="any"
sequence="false"/>
 <p:output port="result" primary="true" content-types="any"
sequence="false"/>
 <p:option name="format" as="xs:QName?"/>
 <p:option name="parameters" as="map(xs:QName,item()*)?"/>
 <p:option name="content-type" as="xs:string" select="'application/
octet-stream'"/>
</p:declare-step>

The compression format of the document appearing on the source port is
determined as follows:

• If the format option is specified, this determines the compression format.
Implementations must support the [GZIP] format, specified with the value
gzip. It is implementation-defined what other formats are supported. It is a
dynamic error (err:XC0202) if the compression format cannot be understood,
determined and/or processed.

• If no format option is specified or its value is the empty sequence, the
compression format will be determined by the step, using the content-type
document-property of the document on the source port and/or by
inspecting its contents. It is implementation-defined how the step determines
the compression format. Implementations should recognize archives in
[GZIP] format.

The parameters option can be used to supply parameters to control the
uncompression. The semantics of the keys and the allowed values for these keys
are implementation-defined. It is a dynamic error (err:XC0079) if the map

84

2. The required steps

parameters contains an entry whose key is defined by the implementation and
whose value is not valid for that key.

Identification of the uncompressed document's content-type is done as follows:

1. If the content-type option is specified, the uncompressed document must
be interpreted according to that content-type. It is a dynamic
error (err:XD0079) if a supplied content-type is not a valid media type of the
form “type/subtype+ext” or “type/subtype”. It is a dynamic
error (err:XC0201) if the p:uncompress step cannot perform the requested
content-type cast.

2. In the absence of an explicit type, the content will be interpreted as content
type application/octet-stream.

Document properties

All document properties are preserved, except for the content-type property
which is updated accordingly.

2.40. p:unwrap
The p:unwrap step replaces matched elements with their children.

<p:declare-step type="p:unwrap">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="text xml html"/>
 <p:option name="match" as="xs:string" select="'/*'"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if that pattern matches anything other than the document
node or element nodes.

85

2. The required steps

Every element in the source document that matches the specified match pattern
is replaced by its children, effectively “unwrapping” the children from their
parent. Non-element nodes and unmatched elements are passed through
unchanged.

Note
The matching applies to the entire document, not just the “top-
most” matches. A pattern of the form h:div will replace all
h:div elements, not just the top-most ones.

This step produces a single document. Special cases:

• If the document element is unwrapped, the result might not be well-formed
XML.

For instance unwrapping the root element of <!-- COMMENT --><root-
element/> will result in a document node with a single comment node
child, which is not well-formed.

• If a document consisting of only an empty root element is unwrapped, the
result will be a document node without children. The result document’s
content type will not change.

• If a document consisting of a root element containing only text is
unwrapped, the result will be a document node with a single text node
child. The result document’s content type will become “text/plain”.

As specified in the core language specification: if the content type changes, the
serialization document property, if present, will be removed.

86

2. The required steps

Document properties

If the resulting document contains exactly one text node, the content-type
property is changed to text/plain and the serialization property is
removed, while all other document properties are preserved. In all other cases,
all document properties are preserved.

2.41. p:uuid
The p:uuid step generates a [UUID] and injects it into the source document.

<p:declare-step type="p:uuid">
 <p:input port="source" primary="true" content-types="xml html"/>
 <p:output port="result" content-types="text xml html"/>
 <p:option name="match" as="xs:string" select="'/*'"/>
 <p:option name="version" as="xs:integer?"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. The value of the
version option must be an integer.

If the version is specified, that version of UUID must be computed. It is a
dynamic error (err:XC0060) if the processor does not support the specified
version of the UUID algorithm. If the version is not specified, the version of
UUID computed is implementation-defined.

Implementations must support version 4 UUIDs. Support for other versions of
UUID, and the mechanism by which the necessary inputs are made available for
computing other versions, is implementation-defined.

The matched nodes are specified with the selection pattern in the match option.
For each matching node, the generated UUID is used in the output (if more than
one node matches, the same UUID is used in each match). Nodes that do not
match are copied without change.

87

2. The required steps

If the expression given in the match option matches an attribute, the UUID is used
as the new value of the attribute in the output. If the attribute is named
“xml:base”, the base URI of the element must also be amended accordingly.

If the document node is matched, the entire document is replaced by a text node
with the UUID. What appears on port result is a text document with the text
node wrapped in a document node.

If the expression matches any other kind of node, the entire node (and not just its
contents) is replaced by the UUID.

Document properties

If the resulting document contains exactly one text node, the content-type
property is changed to text/plain and the serialization property is
removed, while all other document properties are preserved. For other document
types, all document properties are preserved.

2.42. p:wrap-sequence
The p:wrap-sequence step accepts a sequence of documents and produces
either a single document or a new sequence of documents.

<p:declare-step type="p:wrap-sequence">
 <p:input port="source" content-types="text xml html" sequence="true"/>
 <p:output port="result" sequence="true" content-types="application/
xml"/>
 <p:option name="wrapper" required="true" as="xs:QName"/>
 <p:option name="group-adjacent" as="xs:string?"/>
</p:declare-step>

The value of the group-adjacent option must be an XPathExpression.

88

2. The required steps

In its simplest form, p:wrap-sequence takes a sequence of documents and
produces a single, new document by placing each document in the source
sequence inside a new document element as sequential siblings. The name of the
document element is the value specified in the wrapper option.

The group-adjacent option can be used to group adjacent documents. The
XPath context for the group-adjacent option changes over time. For each
document that appears on the source port, the expression is evaluated with that
document as the context document. The context position (position()) is the
position of that document within the sequence and the context size (last()) is
the total number of documents in the sequence. Whenever two or more
sequentially adjacent documents have the same “group adjacent” value, they are
wrapped together in a single wrapper element. Two “group adjacent” values are
the same if the standard XPath function deep-equal() returns true for them.

Document properties

No document properties are preserved. The document produced has no base-
uri property.

2.43. p:wrap
The p:wrap step wraps matching nodes in the source document with a new
parent element.

<p:declare-step type="p:wrap">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="application/xml"/>
 <p:option name="wrapper" required="true" as="xs:QName"/>
 <p:option name="match" required="true" as="xs:string"/>
 <p:option name="group-adjacent" as="xs:string?"/>
</p:declare-step>

89

2. The required steps

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if the pattern matches anything other than document,
element, text, processing instruction, and comment nodes.

The value of the group-adjacent option must be an XPathExpression.

If the node matched is the document node (match="/"), the result is a new
document where the document element is a new element node whose QName is
the value specified in the wrapper option. That new element contains copies of
all of the children of the original document node.

When the selection pattern does not match the document node, every node that
matches the specified match pattern is replaced with a new element node whose
QName is the value specified in the wrapper option. The content of that new
element is a copy of the original, matching node. The p:wrap step performs a
"deep" wrapping, the children of the matching node and their descendants are
processed and wrappers are added to all matching nodes.

The group-adjacent option can be used to group adjacent matching nodes in a
single wrapper element. The specified XPath expression is evaluated for each
matching node with that node as the XPath context node. Whenever two or more
adjacent matching nodes have the same “group adjacent” value, they are
wrapped together in a single wrapper element. Two “group adjacent” values are
the same if the standard XPath function deep-equal() returns true for them.

Two matching nodes are considered adjacent if and only if they are siblings and
either there are no nodes between them or all intervening, non-matching nodes
are whitespace text, comment, or processing instruction nodes.

Document properties

All document properties are preserved.

90

2. The required steps

2.44. p:www-form-urldecode
The p:www-form-urldecode step decodes a x-www-form-urlencoded string into
a JSON representation.

<p:declare-step type="p:www-form-urldecode">
 <p:output port="result" content-types="application/json"/>
 <p:option name="value" required="true" as="xs:string"/>
</p:declare-step>

A JSON object of the form “map(xs:string, xs:string+)” will appear on
result port. The value option is interpreted as a string of parameter values
encoded using the x-www-form-urlencoded algorithm. Each name/value pair is
represented in the JSON object as key/value entry.

It is a dynamic error (err:XC0037) if the value provided is not a properly x-www-
form-urlencoded value.

If any parameter name occurs more than once in the encoded string, a sequence
will be associated with the respective key. The order in the sequence retains the
order of name/value pairs in the encoded string.

Document properties

The resulting JSON document has no properties apart from content-type. In
particular, it has no base-uri.

2.45. p:www-form-urlencode
The p:www-form-urlencode step encodes a set of parameter values as a x-www-
form-urlencoded string.

91

2. The required steps

<p:declare-step type="p:www-form-urlencode">
 <p:output port="result" content-types="text/plain"/>
 <p:option name="parameters" required="true"
as="map(xs:string,xs:anyAtomicType+)"/>
</p:declare-step>

The map entries of parameters option are encoded as a single x-www-form-
urlencoded string of name/value pairs. This string is returned on the result
port as a text document.

If more than one value is associated with a given key in parameters option, a
name/value pair is created for each value.

Document properties

The resulting text document has no properties apart from content-type. In
particular, it has no base-uri.

2.46. p:xinclude
The p:xinclude step applies [XInclude] processing to the source document.

<p:declare-step type="p:xinclude">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="fixup-xml-base" as="xs:boolean" select="false()"/>
 <p:option name="fixup-xml-lang" as="xs:boolean" select="false()"/>
</p:declare-step>

The value of the fixup-xml-base option must be a boolean. If it is true, base URI
fixup will be performed as per [XInclude].

The value of the fixup-xml-lang option must be a boolean. If it is true,
language fixup will be performed as per [XInclude].

92

2. The required steps

The included documents are located with the base URI of the input document
and are not provided as input to the step.

It is a dynamic error (err:XC0029) if an XInclude error occurs during processing.

Document properties

All document properties are preserved.

2.47. p:xquery
The p:xquery step applies an XQuery query to the sequence of documents
provided on the source port.

<p:declare-step type="p:xquery">
 <p:input port="source" content-types="any" sequence="true"
primary="true"/>
 <p:input port="query" content-types="text xml"/>
 <p:output port="result" sequence="true" content-types="any"/>
 <p:option name="parameters" as="map(xs:QName,item()*)?"/>
 <p:option name="version" as="xs:string?"/>
</p:declare-step>

If a sequence of documents is provided on the source port, the first document is
used as the initial context item. The whole sequence is also the default collection.
If no documents are provided on the source port, the initial context item is
undefined and the default collection is empty.

The query port must receive a single document which is either an XML
document or a text document. A text document must be treated as the query. For
an XML document the following rules apply:

• If the document root element is c:query, the text descendants of this
element are considered the query.

93

2. The required steps

<c:query>
 string
</c:query>

• If the document root element is in the XQueryX namespace, the document is
treated as an XQueryX-encoded query. Support for XQueryX is
implementation-defined.

• Otherwise the serialization of the document must be treated as the query.
The document's serialization property (if present) is used.

If the step specifies a version, then that version of XQuery must be used to
process the transformation. It is a dynamic error (err:XC0009) if the specified
XQuery version is not available. If the step does not specify a version, the
implementation may use any version it has available and may use any means to
determine what version to use, including, but not limited to, examining the
version of the query.It is implementation defined which XQuery version(s) is/are
supported.

The name/value pairs in option parameters are used to set the query’s external
variables.

It is a dynamic error (err:XC0101) if a document appearing on port source cannot
be represented in the XDM version associated with the chosen XQuery version,
e.g. when a JSON document contains a map and XDM 3.0 is used. It is a dynamic
error (err:XC0102) if any key in option parameters is associated to a value that
cannot be represented in the XDM version associated with the chosen XQuery
version, e.g. with a map, an array, or a function when XDM 3.0 is used.

It is a dynamic error (err:XC0103) if any error occurs during XQuery’s static
analysis phase. It is a dynamic error (err:XC0104) if any error occurs during
XQuery’s dynamic evaluation phase.

The output of this step may include PSVI annotations.

94

2. The required steps

The static context of the XQuery processor is augmented in the following way:

Statically known default collection type
document()*

Statically known namespaces:
Unchanged from the implementation defaults. No namespace declarations
in the XProc pipeline are automatically exposed in the static context.

The dynamic context of the XQuery processor is augmented in the following
way:

Context item
The first document that appears on the source port.

Context position
1

Context size
1

Variable values
Any parameters passed in the parameters option augment any
implementation-defined variable bindings known to the XQuery processor.

Function implementations
The function implementations provided by the XQuery processor.

Current dateTime
The point in time returned as the current dateTime is implementation-defined.

Implicit timezone
The implicit timezone is implementation-defined.

Available documents
The set of available documents (those that may be retrieved with a URI) is
implementation-dependent.

95

2. The required steps

Available collections
The set of available collections is implementation-dependent.

Default collection
The sequence of documents provided on the source port.

2.47.1. Example

The following pipeline applies XInclude processing and schema validation
before using XQuery:

Example 1. A Sample Pipeline Document

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 version="3.0">
<p:input port="source"/>
<p:output port="result"/>

<p:xinclude/>

<p:validate-with-xml-schema name="validate">
 <p:with-input port="schema"
 href="http://example.com/path/to/schema.xsd"/>
</p:validate-with-xml-schema>

<p:xquery>
 <p:with-input port="query" href="countp.xq"/>
</p:xquery>

</p:declare-step>

Where countp.xq might contain:

96

2. The required steps

<count>{count(.//p)}</count>

2.47.2. Document properties

No document properties are preserved. The base-uri property of each
document will reflect the base URI specified by the query. If the query does not
establish a base URI, the document will not have one.

2.48. p:xslt
The p:xslt step invokes an XSLT stylesheet.

<p:declare-step type="p:xslt">
 <p:input port="source" content-types="any" sequence="true"
primary="true"/>
 <p:input port="stylesheet" content-types="xml"/>
 <p:output port="result" primary="true" sequence="true" content-
types="any"/>
 <p:output port="secondary" sequence="true" content-types="any"/>
 <p:option name="parameters" as="map(xs:QName,item()*)?"/>
 <p:option name="static-parameters" as="map(xs:QName,item()*)?"/>
 <p:option name="global-context-item" as="item()?"/>
 <p:option name="populate-default-collection" as="xs:boolean?"
select="true()"/>
 <p:option name="initial-mode" as="xs:QName?"/>
 <p:option name="template-name" as="xs:QName?"/>
 <p:option name="output-base-uri" as="xs:anyURI?"/>
 <p:option name="version" as="xs:string?"/>
</p:declare-step>

If output-base-uri is relative, it is made absolute against the base URI of the
element on which it is specified (p:with-option or p:xslt in the case of a
syntactic shortcut value).

97

2. The required steps

If the step specifies a version, then that version of XSLT must be used to process
the transformation. It is a dynamic error (err:XC0038) if the specified xslt version
is not available. If the step does not specify a version, the implementation may
use any version it has available and may use any means to determine what
version to use, including, but not limited to, examining the version of the
stylesheet. It is implementation-defined which XSLT version(s) is/are supported.

The XSLT stylesheet provided on the stylesheet port is invoked. It is a dynamic
error (err:XC0093) if a static error occurs during the static analysis of the XSLT
stylesheet. Any parameters passed in the parameters option are used to define
top-level stylesheet parameters.

Parameters passed in the static-parameters option are passed as static
parameters to the XSLT invocation. Whether static parameters are supported is
implementation-defined and depends on the XSLT version (which must be 3.0 or
higher). If static parameters are not supported the option is ignored.

It is a dynamic error (err:XC0095) if an error occurred during the transformation.
It is a dynamic error (err:XC0096) if the transformation is terminated by XSLT
message termination. How XSLT message termination errors are reported to the
XProc processor is implementation-dependent. Implementations should raise an
error using the error code from the XSLT step (for example, the error-code
specified on the xsl:message or Q{http://www.w3.org/2005/xqt-
errors}XTTM9000 if no code is provided).

If XSLT 2.0 or XSLT 3.0 is used, the outputs of this step may include PSVI
annotations.

The interpretation of the input and output ports as well as for the other options
depends on the selected XSLT version.

98

2. The required steps

2.48.1. Invoking an XSLT 3.0 stylesheet

The value of global-context-item is used as global context item for the
stylesheet invocation. If no value is supplied, the following applies:

• If there is a single document on the source port, this document will become
the value of the global-context-item option.

• If there are none or multiple documents on the source port, the global
context item is absent.

The populate-default-collection option is used to control whether all the
documents appearing on source port form the default collection for the XSLT
transformation.

If no value is supplied for template-name option an “Apply-template
invocation” is performed. The documents that appear on source are taken to be
the initial match selection. if populate-default-collection is true, they are
also the default collection. If a value is supplied for the initial-mode option,
this value is used as the initial-mode for the invocation. It is a dynamic
error (err:XC0008) if the stylesheet does not support a given mode. If no value is
supplied, nothing is supplied to the invocation, so the default behaviour defined
for XSLT 3.0 could be applied.

If a value is supplied for option template-name a “Call template invocation” is
performed. The documents on port source are taken as the default collection in
this case. Option initial-mode is ignored. It is a dynamic error (err:XC0056) if
the stylesheet does not provide a given template.

Independent of the way the stylesheet is invoked, the principal result(s) will
appear on output port result while secondary result(s) will appear on output
port secondary. The order in which result documents appear on the secondary
port is implementation dependent. Whether the raw results are delivered or a result

99

2. The required steps

tree is constructed, depends on the (explicit or implicit) setting for attribute
build-tree of in the output-definition for the respective result. If a result tree is
constructed, the result will be a text document if it is a single text node wrapped
into a document node. Otherwise it will be either an XML document or an HTML
document depending on the attribute method on the output-definition for the
respective result. If no result tree is constructed, the stylesheet invocation may
additionally deliver a sequence of atomic values, maps, or arrays. For each item
in this sequence a JSON document will be constructed and appear on the steps
output port.

Option output-base-uri sets the base output URI per XSLT 3.0 specification. If
a final result tree is constructed, this URI is used to resolve a relative URI
reference. If no value is supplied for output-base-uri, the base URI of the first
document in the source port's sequence is used. If no document is supplied on
port source the base URI of the document on port stylesheet is used. It is a
dynamic error (err:XC0121) if a document appearing on the secondary port has a
base URI that is not both absolute and valid according to [RFC 3986].

Note
If no result tree is constructed for one of secondary results, a
sequence of documents sharing the same value for attribute href
may appear on output port result.

2.48.2. Invoking an XSLT 2.0 stylesheet

If a sequence of documents is provided on the source port, the first document is
used as the initial context node. The whole sequence is also the default collection.
If no documents are provided on the source port, the initial context node is
undefined and the default collection is empty. It is a dynamic error (err:XC0094)

100

2. The required steps

if any document supplied on the source port is not an XML document, an HTML
documents, or a Text document if XSLT 2.0 is used.

The populate-default-collection option is used to control whether all the
documents appearing on source port form the default collection for the XSLT
transformation.

The value of option global-context-item is ignored if a stylesheet is invoked
as per XSLT 2.0. The invocation of the transformation is controlled by the
initial-mode and template-name options that set the initial mode and/or
named template in the XSLT transformation where processing begins. It is a
dynamic error (err:XC0007) if any key in parameters is associated to a value
which is not an instance of the XQuery 1.0 and XPath 2.0 Data Model, e.g. with a
map, an array, or a function. It is a dynamic error (err:XC0008) if the specified
initial mode cannot be applied to the specified stylesheet. It is a dynamic
error (err:XC0056) if the specified template name cannot be applied to the
specified stylesheet.

The primary result document of the transformation, if there is one, appears on
the result port. At most one document can appear on the result port. All other
result documents appear on the secondary port. The order in which result
documents appear on the secondary port is implementation dependent.

The output-base-uri option sets the context's output base URI per the XSLT 2.0
specification, otherwise the base URI of the result document is the base URI of
the first document in the source port's sequence. If no document is supplied on
port source the base URI of the document on port stylesheet is used. It is a
dynamic error (err:XC0121) if a document appearing on the secondary port has a
base URI that is not both absolute and valid according to [RFC 3986].

101

2. The required steps

2.48.3. Invoking an XSLT 1.0 stylesheet

The document provided for source is used the transformations source tree. It is a
dynamic error (err:XC0039) if the source port does not contain exactly one XML
document or one HTML document if XSLT 1.0 is used. The values supplied for
options global-context-item, initial-mode, and template-name are ignored.
If XSLT 1.0 is used, an empty sequence of documents must appear on the
secondary port. An XSLT 1.0 step should use the value of the output-base-uri
as the base URI of its output, if the option is specified.

The key/value pairs supplied in parameters are used to set top-level parameters
in the stylesheet. If the value is an atomic value or a node, its string value is
supplied to the stylesheet. It is a dynamic error (err:XC0105) if an XSLT 1.0
stylesheet is invoked and option parameters contains a value that is not an
atomic value or a node.

Document properties

No document properties are preserved. The base-uri property of each
document will reflect the base URI specified by the tranformation. If the
transformation does not establish a base URI, the document will not have one.

3. Step Errors
Several of the steps in the standard step library can generate dynamic errors.

A [Definition: A dynamic error is one which occurs while a pipeline is being
evaluated.] Examples of dynamic errors include references to URIs that cannot be
resolved, steps which fail, and pipelines that exhaust the capacity of an
implementation (such as memory or disk space).

102

3. Step Errors

If a step fails due to a dynamic error, failure propagates upwards until either a
p:try is encountered or the entire pipeline fails. In other words, outside of a
p:try, step failure causes the entire pipeline to fail.

Dynamic errors raised by steps are divided into two categories: dynamic errors
and step errors. The distinction is largely that “step errors” tend to be related to a
particular step or small group of steps (e.g., validation error) whereas the
“dynamic errors” apply to many more steps (e.g., URI not available). There is
also precedent for some of the error codes dating back to XProc 1.0.

Dynamic Errors

err:XD0011
It is a dynamic error if the resource referenced by the href option does not
exist, cannot be accessed or is not a file.

See: Handling of ZIP archives, p:load

err:XD0023
It is a dynamic error if a DTD validation is performed and either the
document is not valid or no DTD is found.

See: Loading XML data

err:XD0043
It is a dynamic error if the dtd-validate parameter is true and the processor
does not support DTD validation.

See: Loading XML data

err:XD0049
It is a dynamic error if the text value is not a well-formed XML document

See: Casting from a text media type, Loading XML data

103

3. Step Errors

err:XD0057
It is a dynamic error if the text document does not conform to the JSON
grammar, unless the parameter liberal is true and the processor chooses to
accept the deviation.

See: Casting from a text media type, Loading JSON data

err:XD0058
It is a dynamic error if the parameter duplicates is reject and the text
document contains a JSON object with duplicate keys.

See: Casting from a text media type, Loading JSON data

err:XD0059
It is a dynamic error if the parameter map contains an entry whose key is
defined in the specification of fn:parse-json and whose value is not valid for
that key, or if it contains an entry with the key fallback when the parameter
escape with true() is also present.

See: Casting from a text media type, Loading JSON data

err:XD0060
It is a dynamic error if the text document can not be converted into the
XPath data model

See: Casting from a text media type, Loading text data

err:XD0062
It is a dynamic error if the content-type is specified and the document-
properties has a “content-type” that is not the same.

See: p:load

err:XD0064
It is a dynamic error if the base URI is not both absolute and valid according
to .

104

3. Step Errors

See: p:archive, p:archive-manifest, p:load, p:make-absolute-uris, p:set-
properties, p:unarchive

err:XD0070
It is a dynamic error if a value is assigned to the serialization document
property that cannot be converted into map(xs:QName, item()*) according to
the rules in section “QName handling” of .

See: p:set-properties

err:XD0078
It is a dynamic error if the loaded document cannot be represented as an
HTML document in the XPath data model.

See: Loading HTML data

err:XD0079
It is a dynamic error if a supplied content-type is not a valid media type of
the form “type/subtype+ext” or “type/subtype”.

See: Overriding content types, p:cast-content-type, p:http-request, p:http-
request, p:load, p:text-join, p:uncompress

Step Errors

err:XC0001
It is a dynamic error if the value of option override-content-type is not a text
media type.

See: p:text-join

err:XC0003
It is a dynamic error if a “username” or a “password” key is present without
specifying a value for the “auth-method” key, if the requested auth-method

105

3. Step Errors

isn't supported, or the authentication challenge contains an authentication
method that isn't supported.

See: p:http-request

err:XC0007
It is a dynamic error if any key in parameters is associated to a value which
is not an instance of the XQuery 1.0 and XPath 2.0 Data Model, e.g. with a
map, an array, or a function.

See: Invoking an XSLT 2.0 stylesheet

err:XC0008
It is a dynamic error if the stylesheet does not support a given mode.

See: Invoking an XSLT 3.0 stylesheet, Invoking an XSLT 2.0 stylesheet

err:XC0009
It is a dynamic error if the specified XQuery version is not available.

See: p:xquery

err:XC0013
It is a dynamic error if the pattern matches a processing instruction and the
new name has a non-null namespace.

See: p:rename

err:XC0014
It is a dynamic error if the XML namespace (http://www.w3.org/XML/
1998/namespace) or the XMLNS namespace (http://www.w3.org/2000/
xmlns/) is the value of either the from option or the to option.

See: p:namespace-rename

106

3. Step Errors

err:XC0019
It is a dynamic error if the documents are not equal according to the
specified comparison method, and the value of the fail-if-not-equal option is
true.

See: p:compare

err:XC0023
It is a dynamic error if the selection pattern matches a node which is not an
element.

See: p:add-attribute, p:delete, p:insert, p:label-elements, p:make-absolute-
uris, p:rename, p:replace, p:set-attributes, p:unwrap, p:wrap

err:XC0024
It is a dynamic error if the selection pattern matches a document node and
the value of the position is “before” or “after”.

See: p:insert

err:XC0025
It is a dynamic error if the selection pattern matches anything other than an
element or a document node and the value of the position option is “first-
child” or “last-child”.

See: p:insert

err:XC0029
It is a dynamic error if an XInclude error occurs during processing.

See: p:xinclude

err:XC0030
It is a dynamic error if the response body cannot be interpreted as requested
(e.g. application/json to override application/xml content).

107

3. Step Errors

See: p:http-request

err:XC0036
It is a dynamic error if the requested hash algorithm is not one that the
processor understands or if the value or parameters are not appropriate for
that algorithm.

See: p:hash

err:XC0037
It is a dynamic error if the value provided is not a properly x-www-form-
urlencoded value.

See: p:www-form-urldecode

err:XC0038
It is a dynamic error if the specified xslt version is not available.

See: p:xslt

err:XC0039
It is a dynamic error if the source port does not contain exactly one XML
document or one HTML document if XSLT 1.0 is used.

See: Invoking an XSLT 1.0 stylesheet

err:XC0050
It is a dynamic error if the URI scheme is not supported or the step cannot
store to the specified location.

See: p:store

err:XC0056
It is a dynamic error if the stylesheet does not provide a given template.

See: Invoking an XSLT 3.0 stylesheet, Invoking an XSLT 2.0 stylesheet

108

3. Step Errors

err:XC0058
It is a dynamic error if the all and relative options are both true.

See: p:add-xml-base

err:XC0059
It is a dynamic error if the QName value in the attribute-name option uses
the prefix “xmlns” or any other prefix that resolves to the namespace name
http://www.w3.org/2000/xmlns/.

See: p:add-attribute

err:XC0060
It is a dynamic error if the processor does not support the specified version
of the UUID algorithm.

See: p:uuid

err:XC0062
It is a dynamic error if the match option matches a namespace node.

See: p:delete

err:XC0069
It is a dynamic error if the properties map contains a key equal to the string
“content-type”.

See: p:set-properties

err:XC0071
It is a dynamic error if the p:cast-content-type step cannot perform the
requested cast.

See: p:cast-content-type

109

3. Step Errors

err:XC0072
It is a dynamic error if the c:data contains content is not a valid base64
string.

See: Casting from an XML media type

err:XC0073
It is a dynamic error if the c:data element does not have a content-type
attribute.

See: Casting from an XML media type

err:XC0074
It is a dynamic error if the content-type is supplied and is not the same as the
content-type specified on the c:data element.

See: Casting from an XML media type

err:XC0076
It is a dynamic error if the comparison method specified in p:compare is not
supported by the implementation.

See: p:compare

err:XC0077
It is a dynamic error if the media types of the documents supplied are
incompatible with the comparison method.

See: p:compare

err:XC0078
It is a dynamic error if the value associated with the “fail-on-timeout” is
associated with true() and a HTTP status code 408 is encountered.

See: p:http-request

110

3. Step Errors

err:XC0079
It is a dynamic error if the map parameters contains an entry whose key is
defined by the implementation and whose value is not valid for that key.

See: p:archive, p:archive-manifest, p:cast-content-type, p:compress,
p:unarchive, p:uncompress

err:XC0080
It is a dynamic error if the number of documents on the archive does not
match the expected number of archive input documents for the given format
and command.

See: Handling of ZIP archives

err:XC0081
It is a dynamic error if the format of the archive does not match the format as
specified in the format option.

See: p:archive

err:XC0084
It is a dynamic error if two or more documents appear on the p:archive
step's source port that have the same base URI or if any document that
appears on the source port has no base URI.

See: p:archive

err:XC0085
It is a dynamic error if the format of the archive does not match the specified
format, cannot be understood, determined and/or processed.

See: p:archive, p:archive-manifest, p:unarchive

111

3. Step Errors

err:XC0092
It is a dynamic error if as a consequence of changing or removing the
namespace of an attribute the attribute's name is not unique on the
respective element.

See: p:namespace-rename

err:XC0093
It is a dynamic error if a static error occurs during the static analysis of the
XSLT stylesheet.

See: p:xslt

err:XC0094
It is a dynamic error if any document supplied on the source port is not an
XML document, an HTML documents, or a Text document if XSLT 2.0 is
used.

See: Invoking an XSLT 2.0 stylesheet

err:XC0095
It is a dynamic error if an error occurred during the transformation.

See: p:xslt

err:XC0096
It is a dynamic error if the transformation is terminated by XSLT message
termination.

See: p:xslt

err:XC0098
It is a dynamic error if a dynamic XPath error occurred while applying sort-
key to a line.

See: p:text-sort

112

3. Step Errors

err:XC0099
It is a dynamic error if the result of applying sort-key to a given line results
in a sequence with more than one item.

See: p:text-sort

err:XC0100
It is a dynamic error if the document on port manifest does not conform to
the given schema.

See: p:archive

err:XC0101
It is a dynamic error if a document appearing on port source cannot be
represented in the XDM version associated with the chosen XQuery version,
e.g. when a JSON document contains a map and XDM 3.0 is used.

See: p:xquery

err:XC0102
It is a dynamic error if any key in option parameters is associated to a value
that cannot be represented in the XDM version associated with the chosen
XQuery version, e.g. with a map, an array, or a function when XDM 3.0 is
used.

See: p:xquery

err:XC0103
It is a dynamic error if any error occurs during XQuery’s static analysis
phase.

See: p:xquery

err:XC0104
It is a dynamic error if any error occurs during XQuery’s dynamic
evaluation phase.

113

3. Step Errors

See: p:xquery

err:XC0105
It is a dynamic error if an XSLT 1.0 stylesheet is invoked and option
parameters contains a value that is not an atomic value or a node.

See: Invoking an XSLT 1.0 stylesheet

err:XC0106
It is a dynamic error if duplicate keys are encountered and option duplicates
has value “reject”.

See: p:json-merge

err:XC0107
It is a dynamic error if a document of a not supported document type
appears on port source of p:json-merge.

See: p:json-merge

err:XC0108
It is a dynamic error if any prefix is not in-scope at the point where the
p:namespace-delete occurs.

See: p:namespace-delete

err:XC0109
It is a dynamic error if a namespace is to be removed from an attribute and
the element already has an attribute with the resulting name.

See: p:namespace-delete

err:XC0110
It is a dynamic error if the evaluation of the XPath expression in option key
for a given item returns either a sequence, an array, a map, or a function.

See: p:json-merge

114

3. Step Errors

err:XC0111
It is a dynamic error if a document of an unsupported document type
appears on port source of p:json-join.

See: p:json-join

err:XC0112
It is a dynamic error if more than one document appears on the port
manifest.

See: p:archive

err:XC0118
It is a dynamic error if an archive manifest is invalid according to the
specification.

See: The archive manifest

err:XC0119
It is a dynamic error if flatten is neither “unbounded”, nor a string that may
be cast to a non-negative integer.

See: p:json-join

err:XC0120
It is a dynamic error if the relative-to option is not present and the document
on the source port does not have a base URI.

See: p:archive-manifest, p:unarchive

err:XC0121
It is a dynamic error if a document appearing on the secondary port has a
base URI that is not both absolute and valid according to .

See: Invoking an XSLT 3.0 stylesheet, Invoking an XSLT 2.0 stylesheet

115

3. Step Errors

err:XC0122
It is a dynamic error if the given method is not supported.

See: p:http-request

err:XC0123
It is a dynamic error if any key in the “auth” map is associated with a value
that is not an instance of the required type.

See: p:http-request

err:XC0124
It is a dynamic error if any key in the “parameters” map is associated with a
value that is not an instance of the required type.

See: p:http-request

err:XC0125
It is a dynamic error if the key “accept-multipart” as the value false() and a
multipart response is detected.

See: p:http-request

err:XC0126
It is a dynamic error if the XPath expression in assert evaluates to false.

See: p:http-request

err:XC0127
It is a dynamic error if the headers map contains two keys that are the same
when compared in a case-insensitive manner.

See: p:http-request

err:XC0128
It is a dynamic error if the URI’s scheme is unknown or not supported.

116

3. Step Errors

See: p:http-request

err:XC0131
It is a dynamic error if the processor cannot support the requested encoding.

See: p:http-request

err:XC0132
It is a dynamic error if the override content encoding cannot be supported.

See: p:http-request

err:XC0133
It is a dynamic error if more than one document appears on the source port
and a content-type header is present and the content type specified is not a
multipart content type.

See: Construction of a multipart request

err:XC0146
It is a dynamic error if the specified value for the override-content-types
option is not an array of arrays, where the inner arrays have exactly two
members of type xs:string.

See: Overriding content types

err:XC0147
It is a dynamic error if the specified value is not a valid XPath regular
expression.

See: Overriding content types, p:text-replace, p:unarchive

err:XC0150
It is a dynamic error if evaluating the XPath expression in option test on a
context document results in an error.

See: p:split-sequence

117

3. Step Errors

err:XC0201
It is a dynamic error if the p:uncompress step cannot perform the requested
content-type cast.

See: p:uncompress

err:XC0202
It is a dynamic error if the compression format cannot be understood,
determined and/or processed.

See: p:compress, p:uncompress

err:XC0203
It is a dynamic error if the specified boundary is not valid (for example, if it
begins with two hyphens “--”).

See: Construction of a multipart request

A. Conformance
Conformant processors must implement all of the features described in this
specification except those that are explicitly identified as optional.

Some aspects of processor behavior are not completely specified; those features
are either implementation-dependent or implementation-defined.

[Definition: An implementation-dependent feature is one where the implementation
has discretion in how it is performed. Implementations are not required to
document or explain how implementation-dependent features are performed.]

[Definition: An implementation-defined feature is one where the implementation
has discretion in how it is performed. Conformant implementations must
document how implementation-defined features are performed.]

118

A. Conformance

A.1. Implementation-defined features
The following features are implementation-defined:

1. The list of formats supported by the p:archive step is implementation-
defined. See Section 2.3, “p:archive”.

2. The list of archive formats that can be modified by p:archive is
implementation-defined. See Section 2.3, “p:archive”.

3. The semantics of any additional attributes, elements and their values are
implementation-defined. See Section 2.3, “p:archive”.

4. It is implementation-defined what other formats are supported. See
Section 2.3, “p:archive”.

5. The semantics of the keys and the allowed values for these keys are
implementation-defined. See Section 2.3, “p:archive”.

6. It is implementation-defined what other formats are supported. See
Section 2.3, “p:archive”.

7. It is implementation-defined how the step determines the archive's format.
See Section 2.3, “p:archive”.

8. The c:archive root element may contain additional implementation-defined
attributes. See Section 2.3.1, “The archive manifest”.

9. The default compression method is implementation-defined. See
Section 2.3.1, “The archive manifest”.

10. It is implementation-defined what other compression methods are
supported. See Section 2.3.1, “The archive manifest”.

11. The default compression method is implementation-defined. See
Section 2.3.1, “The archive manifest”.

12. It is implementation-defined what compression levels are supported. See
Section 2.3.1, “The archive manifest”.

119

A.1. Implementation-defined features

13. The c:entry elements may contain additional implementation-defined
attributes. See Section 2.3.1, “The archive manifest”.

14. The p:archive step may support additional, implementation-defined
commands for ZIP files. See Section 2.3.2, “Handling of ZIP archives”.

15. The actual parameter names supported by p:archive for a particular format
are implementation-defined. See Section 2.3.2, “Handling of ZIP archives”.

16. It is implementation-defined what other formats are supported. See
Section 2.4, “p:archive-manifest”.

17. It is implementation-defined how the step determines the archive's format.
See Section 2.4, “p:archive-manifest”.

18. The semantics of the keys and the allowed values for these keys are
implementation-defined. See Section 2.4, “p:archive-manifest”.

19. Additional information provided for entries in p:archive-manifest is
implementation-defined. See Section 2.4, “p:archive-manifest”.

20. The semantics of the keys and the allowed values for these keys are
implementation-defined. See Section 2.5, “p:cast-content-type”.

21. The precise nature of the conversion from XML to JSON is implementation-
defined. See Section 2.5.1, “Casting from an XML media type”.

22. Casting from an XML media type to any other media type when the input
document is not a c:data document is implementation-defined. See
Section 2.5.1, “Casting from an XML media type”.

23. Casting from an HTML media type to a JSON media type is
implementation-defined. See Section 2.5.2, “Casting from an HTML media
type”.

24. Casting from an HTML media type to any other media type is
implementation-defined. See Section 2.5.2, “Casting from an HTML media
type”.

120

A.1. Implementation-defined features

25. It is implementation-defined whether other result formats are supported. See
Section 2.5.3, “Casting from a JSON media type”.

26. Casting from a JSON media type to an HTML media type is
implementation-defined. See Section 2.5.3, “Casting from a JSON media
type”.

27. Casting from a JSON media type to any other media type is implementation-
defined. See Section 2.5.3, “Casting from a JSON media type”.

28. The precise way in which text documents are parsed into the XPath data
model is implementation-defined. See Section 2.5.4, “Casting from a text
media type”.

29. Casting from a text media type to any other media type is implementation-
defined. See Section 2.5.4, “Casting from a text media type”.

30. Casting from any other media type to a HTML media type, a JSON media
type or a text document is implementation-defined. See Section 2.5.5,
“Casting from any other media type”.

31. Casting from any other media type to any other media type is
implementation-defined. See Section 2.5.5, “Casting from any other media
type”.

32. Implementations of p:compare must support the deep-equal method; other
supported methods are implementation-defined. See Section 2.6,
“p:compare”.

33. If fail-if-not-equal is false, and the documents differ, an implementation-
defined summary of the differences between the two documents may appear
on the differences port. See Section 2.6, “p:compare”.

34. It is implementation-defined what other formats are supported. See
Section 2.7, “p:compress”.

35. The semantics of the keys and the allowed values for these keys are
implementation-defined. See Section 2.7, “p:compress”.

121

A.1. Implementation-defined features

36. It is implementation-defined what other algorithms are supported. See
Section 2.12, “p:hash”.

37. It is implementation-defined how a multipart boundary is constructed. See
Section 2.13.1, “Construction of a multipart request”.

38. In the absence of an explicit type, the content type is implementation-
defined See Section 2.19, “p:load”.

39. Additional XML parameters are implementation-defined. See Section 2.19.1,
“Loading XML data”.

40. Text parameters are implementation-defined. See Section 2.19.2, “Loading
text data”.

41. Additional JSON parameters are implementation-defined. See Section 2.19.3,
“Loading JSON data”.

42. The precise way in which HTML documents are parsed into the XPath data
model is implementation-defined. See Section 2.19.4, “Loading HTML data”.

43. HTML parameters are implementation-defined. See Section 2.19.4, “Loading
HTML data”.

44. How a processor interprets other media types is implementation-defined.
See Section 2.19.5, “Loading binary data”.

45. Parameters for other media types are implementation-defined. See
Section 2.19.5, “Loading binary data”.

46. Support for other collations is implementation-defined. See Section 2.36,
“p:text-sort”.

47. It is implementation-defined what other formats are supported. See
Section 2.38, “p:unarchive”.

48. It is implementation-defined how the step determines the archive's format.
See Section 2.38, “p:unarchive”.

122

A.1. Implementation-defined features

49. The semantics of the keys and the allowed values for these keys are
implementation-defined. See Section 2.38, “p:unarchive”.

50. It is implementation-defined what other formats are supported. See
Section 2.39, “p:uncompress”.

51. It is implementation-defined how the step determines the compression
format. See Section 2.39, “p:uncompress”.

52. The semantics of the keys and the allowed values for these keys are
implementation-defined. See Section 2.39, “p:uncompress”.

53. If the version is not specified, the version of UUID computed is
implementation-defined. See Section 2.41, “p:uuid”.

54. Support for other versions of UUID, and the mechanism by which the
necessary inputs are made available for computing other versions, is
implementation-defined. See Section 2.41, “p:uuid”.

55. Support for XQueryX is implementation-defined. See Section 2.47,
“p:xquery”.

56. The point in time returned as the current dateTime is implementation-
defined. See Section 2.47, “p:xquery”.

57. The implicit timezone is implementation-defined. See Section 2.47,
“p:xquery”.

58. It is implementation-defined which XSLT version(s) is/are supported. See
Section 2.48, “p:xslt”.

59. Whether static parameters are supported is implementation-defined and
depends on the XSLT version (which must be 3.0 or higher). See Section 2.48,
“p:xslt”.

123

A.1. Implementation-defined features

A.2. Implementation-dependent features
The following features are implementation-dependent:

1. If the IRI reference specified by the base-uri option on p:make-absolute-uris
is absent and the input document has no base URI, the results are
implementation-dependent. See Section 2.20, “p:make-absolute-uris”.

2. The set of available documents (those that may be retrieved with a URI) is
implementation-dependent. See Section 2.47, “p:xquery”.

3. The set of available collections is implementation-dependent. See
Section 2.47, “p:xquery”.

4. How XSLT message termination errors are reported to the XProc processor is
implementation-dependent. See Section 2.48, “p:xslt”.

B. References

B.1. Normative References
[XProc 3.0] XProc 3.0: An XML Pipeline Language. Norman Walsh, Achim
Berndzen, Gerrit Imsieke and Erik Siegel, editors.

[W3C XML Schema: Part 2] XML Schema Part 2: Datatypes Second Edition. Paul V.
Biron and Ashok Malhotra, editors. World Wide Web Consortium, 28 October
2004.

[XPath 3.1] XML Path Language (XPath) 3.1. Jonathan Robie, Michael Dyck, Josh
Spiegel, editors. W3C Recommendation. 21 March 2017.

[XPath and XQuery Functions and Operators 3.1] XPath and XQuery Functions
and Operators 3.1. Michael Kay, editor. W3C Recommendation. 21 March 2017

124

A.2. Implementation-dependent features

https://spec.xproc.org/3.0/xproc/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xpath31/
https://www.w3.org/TR/xpath-functions-31/
https://www.w3.org/TR/xpath-functions-31/

[XSLT 3.0] XSL Transformations (XSLT) Version 3.0. Michael Kay, editor. W3C
Recommendation. 8 June 2017.

[XInclude] XML Inclusions (XInclude) Version 1.0 (Second Edition). Jonathan Marsh,
David Orchard, and Daniel Veillard, editors. W3C Recommendation. 15
November 2006.

[RFC 1321] RFC 1321: The MD5 Message-Digest Algorithm. R. Rivest. Network
Working Group, IETF, April 1992.

[RFC 1521] RFC 1521: MIME (Multipurpose Internet Mail Extensions) Part One:
Mechanisms for Specifying and Describing the Format of Internet Message Bodies. N.
Borenstein. Network Working Group, IETF, September 1993.

[RFC 2046] RFC 2046: Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types. N. Freed, N. Borenstein, editors. Internet Engineering Task Force.
November, 1996.

[RFC 2119] Key words for use in RFCs to Indicate Requirement Levels. S. Bradner.
Network Working Group, IETF, Mar 1997.

[RFC 2617] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication.
J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, L.
Stewart. June, 1999 .

[RFC 3986] RFC 3986: Uniform Resource Identifier (URI): General Syntax. T. Berners-
Lee, R. Fielding, and L. Masinter, editors. Internet Engineering Task Force.
January, 2005.

[UUID] ITU X.667: Information technology - Open Systems Interconnection -
Procedures for the operation of OSI Registration Authorities: Generation and registration
of Universally Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier
components. 2004.

125

B.1. Normative References

https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xinclude/
https://doi.org/10.17487/RFC1321
https://doi.org/10.17487/RFC1521
https://doi.org/10.17487/RFC1521
https://doi.org/10.17487/RFC2046
https://doi.org/10.17487/RFC2046
https://doi.org/10.17487/RFC2119
https://doi.org/10.17487/RFC2617
https://doi.org/10.17487/RFC3986
https://www.itu.int/ITU-T/studygroups/com17/oid.html
https://www.itu.int/ITU-T/studygroups/com17/oid.html
https://www.itu.int/ITU-T/studygroups/com17/oid.html
https://www.itu.int/ITU-T/studygroups/com17/oid.html

[SHA1] Federal Information Processing Standards Publication 180-1: Secure Hash
Standard. 1995.

[CRC32] “32-Bit Cyclic Redundancy Codes for Internet Applications”, The
International Conference on Dependable Systems and Networks: 459. 10.1109/
DSN.2002.1028931. P. Koopman. June 2002.

[ZIP] .ZIP File Format Specification.

[GZIP] GZIP file format specification version 4.3.

C. Glossary
dynamic error

A dynamic error is one which occurs while a pipeline is being evaluated.

implementation-defined
An implementation-defined feature is one where the implementation has
discretion in how it is performed. Conformant implementations must
document how implementation-defined features are performed.

implementation-dependent
An implementation-dependent feature is one where the implementation has
discretion in how it is performed. Implementations are not required to
document or explain how implementation-dependent features are performed.

D. Ancillary files
This specification includes by reference a number of ancillary files.

steps.xpl
An XProc step library for the declared steps.

126

C. Glossary

https://csrc.nist.gov/publications/detail/fips/180/1/archive/1995-04-17
https://csrc.nist.gov/publications/detail/fips/180/1/archive/1995-04-17
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://tools.ietf.org/html/rfc1952

E. Credits
This document is derived from XProc: An XML Pipeline Language published by
the W3C. It was developed by the XML Processing Model Working Group and
edited by Norman Walsh, Alex Miłowski, and Henry Thompson.

The editors of this specification extend their gratitude to everyone who
contributed to this document and all of the versions that came before it.

F. Change Log
This appendix catalogs non-editorial changes made after the August 2020 “last
call” draft:

1. Clarified that the manifest has precedence in the p:archive step. (issue 462.)

2. Changed the type of several options from xs:token to xs:string (issue
490.)

3. Changed the type of the parameters option from
map(xs:string,xs:untypedAtomic+) to
map(xs:string,xs:anyAtomicType+). (issue 491.)

These are the non-editorial changes made after the February 2020 “last call”
draft:

1. For p:cast-content-type the expected result type for casting a c:param-
set document to “application/json” was specified as map(xs:QName,
xs:string). (2020-03-15)

2. In p:http-request, instead of using all document properties (with a few
explicit exceptions) as headers, only document properties in the http://
www.w3.org/ns/xproc-http namespace will be used. (2020-03-18)

127

E. Credits

https://www.w3.org/TR/2010/REC-xproc-20100511/
https://spec.xproc.org/lastcall-2020-08/head/steps/
https://spec.xproc.org/lastcall-2020-08/head/steps/
https://github.com/xproc/3.0-steps/issues/462
https://github.com/xproc/3.0-steps/issues/490
https://github.com/xproc/3.0-steps/issues/491
https://spec.xproc.org/lastcall-2020-02/head/steps/

3. Section 2.3.1, “The archive manifest”: An attribute c:entry/@content-type
was added to the archive manifest, to be filled by the p:archive-manifest
step. (2020-03-20)

4. A static-parameters was added to p:xslt. (2020-03-23)

5. The override-content-types option was added to p:archive-manifest
and p:unarchive. (2020-03-30)

6. Clarified the regular expression matching for p:text-replace and
p:unarchive. Added an error code for invalid regular expressions.
(2020-04-02)

7. Replaced errors XC0070 and XC0130 with XD0079. (2020-04-09)

8. Changed signature of p:split-sequence so that any document can appear
one port source. (2020-05-22)

9. Change the behavior of the global-context-item option of p:xslt.
(2020-06-10)

10. Clarified which steps may produce PSVI annotations. (2020-06-09)

11. Clarified the behaviour in p:archive: A missing resource referenced by
c:archive/c:entry/@href is only an error for command = 'create'. (2020-06-11)

12. Option populate-default-collection is added to the signature of
p:xslt. (2020-06-20)

13. Clarified how the default content-type header of p:http-request is
constructed if a single document appears on source port. (2020-06-20)

14. Added error (XD0079) to p:http-request and p:load for invalid content-
types. (2020-06-23)

128

F. Change Log

15. Changed signature of the result port of p:load to sequence="false" and
adapted the prose accordingly. (2020-06-24)

129

F. Change Log

