
Copyright © 2018, 2019, 2020, 2021, 2022 the Contributors to the XProc 3.0: Standard Step Library specification, published by the XProc

Next Community Group under the W3C Community Contributor License Agreement (CLA). A human-readable summary is available.

XProc 3.0: Standard Step Library
Community Group Report 12 September 2022

Specification:
https://spec.xproc.org/3.0/steps/

Editors:
Norman Walsh
Achim Berndzen
Gerrit Imsieke
Erik Siegel

Participate:
GitHub xproc/3.0-steps
Report an issue

Errata:
https://spec.xproc.org/3.0/steps/errata.html

This document is also available in these non-normative formats: XML, PDF (A4), PDF (US
Letter).

Abstract
This specification describes the standard step vocabulary of XProc 3.0: An XML Pipeline
Language.

https://www.w3.org/
https://www.w3.org/Consortium/Legal/ipr-notice#Copyright
https://www.w3.org/community/xproc-next/
https://www.w3.org/community/xproc-next/
https://www.w3.org/community/about/agreements/cla/
https://www.w3.org/community/about/agreements/cla-deed/
https://spec.xproc.org/3.0/steps/
http://github.com/xproc/3.0-steps
http://github.com/xproc/3.0-steps/issues
https://spec.xproc.org/3.0/steps/errata.html

Status of this Document

This specification was published by the XProc Next Community Group. It is not a
W3C Standard nor is it on the W3C Standards Track. Please note that under the W3C
Community Contributor License Agreement (CLA) there is a limited opt-out and
other conditions apply. Learn more about W3C Community and Business Groups.

If you wish to make comments regarding this document, please send them to xproc-
dev@w3.org. (subscribe, archives).

This document is derived from XProc: An XML Pipeline Language published by the
W3C.

1

Status of this Document

https://www.w3.org/community/xproc-next/
https://www.w3.org/community/about/agreements/cla/
https://www.w3.org/community/about/agreements/cla/
https://www.w3.org/community/
mailto:xproc-dev@w3.org
mailto:xproc-dev@w3.org
mailto:xproc-dev-request@w3.org?subject=subscribe
https://lists.w3.org/Archives/Public/xproc-dev/
https://www.w3.org/TR/2010/REC-xproc-20100511/

1.

2.
2.1.
2.2.
2.3.
2.3.1.
2.3.2.
2.4.
2.4.1.
2.5.
2.5.1.
2.5.2.
2.5.3.
2.5.4.
2.5.5.
2.6.
2.7.
2.8.
2.9.
2.10.
2.11.
2.12.
2.13.
2.13.1.
2.13.2.
2.14.
2.15.
2.16.
2.17.
2.18.
2.19.
2.19.1.
2.19.2.
2.19.3.

Table of Contents
Introduction... 5

The required steps... 7
p:add-attribute... 7
p:add-xml-base.. 8
p:archive... 9

The archive manifest.. 12
Handling of ZIP archives.. 14

p:archive-manifest... 17
Overriding content types.. 18

p:cast-content-type.. 20
Casting from an XML media type... 20
Casting from an HTML media type.. 22
Casting from a JSON media type... 22
Casting from a text media type.. 23
Casting from any other media type... 24

p:compare... 24
p:compress.. 25
p:count.. 26
p:delete.. 27
p:error.. 28
p:filter.. 29
p:hash.. 30
p:http-request... 31

Construction of a multipart request.. 38
Managing a multipart response... 39

p:identity.. 40
p:insert.. 40
p:json-join... 41
p:json-merge... 42
p:label-elements... 44
p:load.. 45

Loading XML data... 46
Loading text data... 46
Loading JSON data.. 47

2

Table of Contents

2.19.4.
2.19.5.
2.20.
2.21.
2.22.
2.23.
2.24.
2.25.
2.26.
2.27.
2.28.
2.29.
2.30.
2.31.
2.32.
2.33.
2.34.
2.35.
2.36.
2.37.
2.38.
2.39.
2.40.
2.41.
2.42.
2.43.
2.44.
2.45.
2.46.
2.47.
2.47.1.
2.47.2.
2.48.
2.48.1.
2.48.2.
2.48.3.

Loading HTML data.. 47
Loading binary data... 48

p:make-absolute-uris.. 48
p:namespace-delete... 49
p:namespace-rename.. 50
p:pack.. 52
p:rename... 53
p:replace.. 54
p:set-attributes... 55
p:set-properties.. 56
p:sink... 57
p:split-sequence... 57
p:store.. 59
p:string-replace.. 60
p:text-count.. 61
p:text-head.. 61
p:text-join.. 62
p:text-replace.. 63
p:text-sort.. 64
p:text-tail... 66
p:unarchive... 67
p:uncompress... 70
p:unwrap.. 71
p:uuid.. 73
p:wrap-sequence... 74
p:wrap... 75
p:www-form-urldecode... 76
p:www-form-urlencode... 77
p:xinclude... 77
p:xquery.. 78

Example... 80
Document properties... 81

p:xslt.. 81
Invoking an XSLT 3.0 stylesheet.. 83
Invoking an XSLT 2.0 stylesheet.. 84
Invoking an XSLT 1.0 stylesheet.. 85

3

Table of Contents

3.

A.
A.1.
A.2.

B.
B.1.

C.

D.

E.

F.

Step Errors... 86

Conformance... 99
Implementation-defined features... 99
Implementation-dependent features.. 103

References.. 104
Normative References.. 104

Glossary... 105

Ancillary files.. 106

Credits.. 106

Change Log.. 106

4

Table of Contents

1. Introduction
This specification describes the standard, required atomic XProc steps. A machine-
readable description of these steps may be found in steps.xpl.

Many atomic steps are available for [XProc 3.0]. They are described in several
specifications. This specification describes the general background common to all
steps. A conformant processor must implement all of the steps in this specification.
Additional steps may also be implemented.

The types given for options should be understood as follows:

• Types in the XML Schema namespace, identified as QNames with the xs: prefix,
as per the XML Schema specification with one exception. Anywhere an
xs:QName is specified, an EQName is allowed.

• XPathExpression: As a string per [W3C XML Schema: Part 2], including
whitespace normalization, and the further requirement to be a conformant
Expression per [XPath 3.1].

• XSLTSelectionPattern: As a string per [XSLT 3.0] conforming to an XSLT
selection pattern.

• XPathSequenceType: An XPath sequence type.

• ContentType: A media type as defined in [RFC 2046].

• ContentTypes: As a whitespace separated list of media types as defined in [RFC
2046].

Option values are often expressed using the shortcut syntax. In these cases, the
option shortcuts are generally treated as value templates. However, for options of
type map() or array(), an expression is required (there is no non-expression string
which can ever be a legal value for a map or array). Given that every value entered
this way will have to be a value template, and consequently every curly brace
contained within the expression will have to be escaped, values of type map or array
are defined to be expressions directly.

Some aspects of documents are generally unchanged by steps:

5

1. Introduction

https://www.w3.org/TR/xquery-30/#doc-xquery30-EQName
https://www.w3.org/TR/xpath-31/#id-types

• When a step in this library produces an output document, the base URI of the
output is the base URI of the step's primary input document unless the step's
process explicitly sets an xml:base attribute or the step's description explicitly
states how the base URI is constructed.

• Steps are responsible for describing how document properties are transformed
as documents flow through them. Many steps claim that the specified properties
are preserved. Generally, it is the responsibility of the pipeline author to
determine when this is inapropriate and take corrective action. However, it is the
responsibility of the pipeline processor to assure that the content-type
property is correct. If a step transforms a document in a manner that is
inconsistent with the content-type property (accepting an XML document on
the source port but producing a text document on the result, for example), the
processor must assure that the content-type property is appropriate. If a step
changes the content-type in this way, it must also remove the serialization
property

Also, in this specification, several steps use this element for result information:

<c:result>
 string
</c:result>

When a step uses an XPath to compute an option value, the XPath context is as
defined in [XProc 3.0].

When a step specifies a particular version of a technology, implementations must
implement that version or a subsequent version that is backwards compatible with
that version. At user-option, they may implement other non-backwards compatible
versions.

In this specification the words must, must not, should, should not, may and
recommended are to be interpreted as described in [RFC 2119].

As described in PSVIs in XProc in XProc 3.0: An XML Pipeline Language, steps may not
produce PSVI output unless that behavior is explicitly described. In this specification,
the steps that may produce PSVI output are the “identity” steps: p:identity,
p:store, and p:split-sequence (which must preserve PSVI properties that appear

6

1. Introduction

https://spec.xproc.org/3.0/xproc/#psvi-support
https://spec.xproc.org/3.0/xproc/

on their inputs). In addition, the p:xslt and p:xquery steps may return documents
with PSVI annotations.

2. The required steps
A conformant processor must support all of these steps.

2.1. p:add-attribute
The p:add-attribute step adds a single attribute to a set of matching elements. The
input document specified on the source is processed for matches specified by the
selection pattern in the match option. For each of these matches, the attribute whose
name is specified by the attribute-name option is set to the attribute value specified
by the attribute-value option.

The resulting document is produced on the result output port and consists of a
exact copy of the input with the exception of the matched elements. Each of the
matched elements is copied to the output with the addition of the specified attribute
with the specified value.

<p:declare-step type="p:add-attribute">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="match" as="xs:string" select="'/*'"/>
 <p:option name="attribute-name" required="true" as="xs:QName"/>
 <p:option name="attribute-value" required="true" as="xs:string"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if the selection pattern matches a node which is not an element.

The value of the attribute-value option must be a legal attribute value according
to XML.

If an attribute with the same name as the expanded name from the attribute-name
option exists on the matched element, the value specified in the attribute-value
option is used to set the value of that existing attribute. That is, the value of the
existing attribute is changed to the attribute-value value.

7

2. The required steps

Note
If multiple attributes need to be set on the same element(s), the
p:set-attributes step can be used to set them all at once.

This step cannot be used to add namespace declarations. It is a dynamic
error (err:XC0059) if the QName value in the attribute-name option uses the prefix
“xmlns” or any other prefix that resolves to the namespace name http://
www.w3.org/2000/xmlns/. Note, however, that while namespace declarations
cannot be added explicitly by this step, adding an attribute whose name is in a
namespace for which there is no namespace declaration in scope on the matched
element may result in a namespace binding being added by namespace fixup.

If an attribute named xml:base is added or changed, the base URI of the element
must also be amended accordingly.

Document properties

All document properties are preserved.

2.2. p:add-xml-base
The p:add-xml-base step exposes the base URI via explicit xml:base attributes. The
input document from the source port is replicated to the result port with xml:base
attributes added to or corrected on each element as specified by the options on this
step.

<p:declare-step type="p:add-xml-base">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="all" as="xs:boolean" select="false()"/>
 <p:option name="relative" as="xs:boolean" select="true()"/>
</p:declare-step>

The value of the all option must be a boolean.

The value of the relative option must be a boolean.

8

2. The required steps

It is a dynamic error (err:XC0058) if the all and relative options are both true.

The p:add-xml-base step modifies its input as follows:

• For every element that is a child of the document node: force the element to have
an xml:base attribute with the document's [base URI] property's value as its
value.

• For other elements:

◦ If the all option has the value true, force the element to have an xml:base
attribute with the element's [base URI] value as its value.

◦ If the element's [base URI] is different from the its parent's [base URI], force
the element to have an xml:base attribute with the following value: if the
value of the relative option is true, a string which, when resolved against
the parent's [base URI], will give the element's [base URI], otherwise the
element's [base URI].

◦ Otherwise, if there is an xml:base attribute present, remove it.

Document properties

All document properties are preserved.

2.3. p:archive
The p:archive step outputs on its result port an archive (usually binary)
document, for instance a ZIP file. A specification of the contents of the archive may
be specified in a manifest XML document on the manifest port. The step produces a
report on the report port, which contains the manifest, amended with additional
information about the archiving.

9

2. The required steps

<p:declare-step type="p:archive">
 <p:input port="source" primary="true" content-types="any"
sequence="true"/>
 <p:input port="manifest" content-types="xml" sequence="true">
 <p:empty/>
 </p:input>
 <p:input port="archive" content-types="any" sequence="true">
 <p:empty/>
 </p:input>
 <p:output port="result" primary="true" content-types="any"
sequence="false"/>
 <p:output port="report" content-types="application/xml"
sequence="false"/>
 <p:option name="format" as="xs:QName" select="'zip'"/>
 <p:option name="relative-to" as="xs:anyURI?"/>
 <p:option name="parameters" as="map(xs:QName, item()*)?"/>
</p:declare-step>

The p:archive step can perform several different operations on archives. The most
common one will likely be creating an archive, but it could also, depending on the
archive format, provide services like update, freshen or even merge. The only format
implementations must support is [ZIP]. The list of formats supported by the
p:archive step is implementation-defined.

The p:archive step has the following input ports:

source
The (primary) source port is used to provide documents to be archived (for
instance constructed by other steps). How and which of these documents are
processed is governed by the document(s) appearing on the other input ports
and the combination of options and parameters. See below for details. It is a
dynamic error (err:XC0084) if two or more documents appear on the p:archive
step's source port that have the same base URI or if any document that appears
on the source port has no base URI.

manifest
The manifest port can receive a manifest document that tells the step how to
construct the archive. If no manifest document is provided on this port, a default
manifest is constructed automatically. See Section 2.3.1, “The archive manifest”.
It is a dynamic error (err:XC0100) if the document on port manifest does not
conform to the given schema.

10

2. The required steps

It is a dynamic error (err:XC0112) if more than one document appears on the port
manifest.

The default input for this port is the empty sequence.

archive
The archive port is used to provide the step with existing archive(s) for
operations like update, freshen or merge. Handling of ZIP files supports
modifying archives appearing on the archive port (Section 2.3.2, “Handling of
ZIP archives”). The list of archive formats that can be modified by p:archive is
implementation-defined. For instance an implementation that supports archive
merging may accept more than one document on the archive port.

The default input for this port is the empty sequence.

The p:archive step has the following output ports:

result
The (primary) result port will output the resulting archive.

report
The report port will output a report about the archiving operation. This will be
the same as the manifest (as provided on the manifest port or automatically
created if there was no manifest provided), optionally amended with additional
attributes and/or elements. The semantics of any additional attributes, elements
and their values are implementation-defined.

The p:archive step has the following options:

format
The format of the archive can be specified using the format option.
Implementations must support the [ZIP] format, specified with the value zip. It
is implementation-defined what other formats are supported.

parameters
The parameters option can be used to supply parameters to control the
archiving. The semantics of the keys and the allowed values for these keys are
implementation-defined. It is a dynamic error (err:XC0079) if the map parameters
contains an entry whose key is defined by the implementation and whose value
is not valid for that key.

11

2. The required steps

relative-to
The relative-to option is used in creating a manifest when no manifest is
provided on the manifest port. If a manifest is present this option is not used. If
the option’s value is a relative URI, it is made absolute against the base URI of
the element on which it is specified (p:with-option or the step in case of a
syntactic shortcut value). It is a dynamic error (err:XD0064) if the base URI is not
both absolute and valid according to [RFC 3986].

The format of the archive is determined as follows:

• If the format option is specified, this determines the format of the archive.
Implementations must support the [ZIP] format, specified with the value zip. It
is implementation-defined what other formats are supported. It is a dynamic
error (err:XC0081) if the format of the archive does not match the format as
specified in the format option.

• If no format option is specified or if its value is the empty sequence, the
archive's format will be determined by the step, using the content-type
document-property of the document on the archive port and/or by inspecting
its contents. It is implementation-defined how the step determines the archive's
format. Implementations should recognize archives in [ZIP] format.

It is a dynamic error (err:XC0085) if the format of the archive does not match the
specified format, cannot be understood, determined and/or processed.

2.3.1. The archive manifest

An archive manifest specifies which documents will be considered in processing the
archive. Every entry in the archive must have a corresponding entry in the manifest;
if no such entry is provided, one will be constructed automatically (see below). If
manifest entries are provided for documents that are not in the archive, how those are
processed depends on the archive type and the parameters passed to the step.

A manifest is represented by a c:archive root element:

<c:archive>
 (c:entry* &
 anyNonXProcElement*)
</c:archive>

12

2. The required steps

The c:archive root element may contain additional implementation-defined attributes.

All entries in the archive must be present as c:entry child elements:

<c:entry
 name = string
 href = anyURI
 comment? = string
 method? = string
 level? = string
 content-type? = ContentType>
 anyElement*
</c:entry>

• The name attribute specifies the name of the entry in the archive.

• The href attribute must be a valid URI according to [RFC 3986]. If its value is
relative, it is made absolute against the base URI of the manifest. There are two
possible cases:

◦ If the (absolute) href value is exactly the same as the base URI of a
document appearing on the source port, that document is associated with
this entry. If this entry is to be added to the archive, the associated
document will be used. (The serialization document property can be
used to provide serialization properties.)

◦ If no document on the source port has a base URI that is exactly the same
as the (absolute) href value, the document at the specified URI is associated
with this entry. These documents are stored in the archive “as is”; they must
not be parsed and re-serialized.

• The method attribute specifies how the entry should be compressed. The default
compression method is implementation-defined. Implementations must support no
compression, specified with the value none. It is implementation-defined what
other compression methods are supported.

• The level attribute specifies the level of compression. The default compression
method is implementation-defined. It is implementation-defined what compression
levels are supported.

13

2. The required steps

• The content-type attribute specifies the content-type of the entry as detected
by the processor. It will be set by p:archive-manifest in constructing the
manifest. It will be ignored by p:archive.

The p:archive step should strive to retain the order of the c:entry elements when
constructing the archive. For instance, an e-book in EPUB format has a non-
compressed entry that must be first in the archive. It should be possible to construct
such an archive using p:archive.

The c:entry elements may contain additional implementation-defined attributes.

If no manifest entry is provided for a document appearing on the source port, the
step will create a manifest entry for the document. (If no document arrives on the
manifest port at all, a complete manifest document will be created.)

In a constructed manifest entry:

• The entry’s href value is the base URI of the document.

• The entry’s name value is derived from the base URI of the document and the
relative-to option.

◦ First, the value of the relative-to option is made absolute. If the initial
substring of the base URI is exactly the same as the resulting absolute value,
then the name is the portion of the base URI that follows that initial
substring.

◦ If there is no relative-to option or if its value is not the initial substring of
the base URI of the document, the name is the path portion of the URI (per
[RFC 3986]). If the path portion begins with an initial slash, that slash is
removed.

It is a dynamic error (err:XC0118) if an archive manifest is invalid according to the
specification.

2.3.2. Handling of ZIP archives

The format of the archive can be specified using the format option. Implementations
must support the [ZIP] format, specified with the value zip.

14

2. The required steps

When ZIP archives are processed, every name in the manifest must be a relative path
without a leading slash.

The parameters option can be used to supply parameters to control the archiving.
For the zip format, the following parameters must be supported:

command
Specifies what operation to perform. If not specified, its default value is update.
Implementations must support the values update, create, freshen, and
delete. The p:archive step may support additional, implementation-defined
commands for ZIP files. Unless otherwise specified, exactly zero or one ZIP
archive can appear on the archive port for the commands described below. If no
archive appears, a new archive will be created.

update
When the command parameter is set to update, the ZIP archive will be
updated:

1. For every entry in the ZIP file:

◦ If the manifest contains a c:entry with a matching name, the entry
in the ZIP file is updated with the document identified by the
c:entry in the manifest.

◦ If the manifest does not contain a matching c:entry, the ZIP entry
name is resolved against the base URI of the ZIP file.

▪ If a document exists at that URI and either has no timestamp
or has a timestamp more than the timestamp in the ZIP file,
the entry in the ZIP file will be updated with the document at
the resolved URI.

▪ If no document exists at that URI, or the document cannot be
accessed, or the document has a timestamp and the timestamp
in the ZIP archive is more recent than the timestamp of the
document, then the ZIP entry is unchanged.

2. For every c:entry in the manifest that does not have a matching entry
in the ZIP file, the ZIP file will be updated by adding the document
identified by the c:entry to the ZIP file.

15

2. The required steps

create
When the command parameter is set to create, the ZIP archive will be
created. Creating a ZIP archive behaves exactly like update except that any
timestamps are ignored; every ZIP entry will be updated or created if there
is a c:entry or matching document for it. The document must be obtained
by dereferencing the URI in href. It is a dynamic error (err:XD0011) if the
resource referenced by the href option does not exist, cannot be accessed or
is not a file.

freshen
When the command parameter is set to freshen, existing files in the ZIP
archive may be updated, but no new files will be added. Freshing a ZIP
archive behaves exactly like update except that only entries that already
exist in the ZIP archive are considered.

delete
When the command parameter is set to delete, exactly one document in ZIP
format must appear on the archive port. For every entry in the ZIP file:

• If the manifest contains a c:entry with a matching name, the entry in
the ZIP file is removed from the ZIP archive.

If the manifest contains c:entry elements which do not have a matching
entry in the ZIP archive, they are simply ignored.

level
Specifies the default compression level for files added to or updated in the
archive. If the level attribute is specified on a c:entry, its value takes
precedence for that entry. Values that must be supported for ZIP files are:
“smallest”, “fastest”, “default”, “huffman”, and “none”.

method
Specifies the default compression method for files added to or updated in the
archive. If the method attribute is specified on a c:entry, its value takes
precedence for that entry. Values that must be supported for ZIP files are: “none”
and “deflated”.

16

2. The required steps

It is a dynamic error (err:XC0080) if the number of documents on the archive does
not match the expected number of archive input documents for the given format and
command.

Implementations of other archive formats should use the same parameter names if
applicable. The value spaces for these parameters may be format-specific though. The
actual parameter names supported by p:archive for a particular format are
implementation-defined.

Document properties

No document properties are preserved. The archive has no base-uri.

2.4. p:archive-manifest
The p:archive-manifest creates an XML manifest file describing the contents of the
archive appearing on its source port.

<p:declare-step type="p:archive-manifest">
 <p:input port="source" primary="true" content-types="any"
sequence="false"/>
 <p:output port="result" primary="true" content-types="application/xml"
sequence="false"/>
 <p:option name="format" as="xs:QName?"/>
 <p:option name="parameters" as="map(xs:QName, item()*)?"/>
 <p:option name="relative-to" as="xs:anyURI?"/>
 <p:option name="override-content-types" as="array(array(xs:string))?"/>
</p:declare-step>

The p:archive-manifest step inspects the archive appearing on its source port and
outputs a manifest describing the contents of the archive on its result port.

The format of the archive is determined as follows:

• If the format option is specified, this determines the format of the archive.
Implementations must support the [ZIP] format, specified with the value zip. It
is implementation-defined what other formats are supported.

• If no format option is specified or if its value is the empty sequence, the
archive's format will be determined by the step, using the content-type

17

2. The required steps

document-property of the document on the source port and/or by inspecting its
contents. It is implementation-defined how the step determines the archive's
format. Implementations should recognize archives in [ZIP] format.

It is a dynamic error (err:XC0085) if the format of the archive does not match the
specified format, cannot be understood, determined and/or processed.

The parameters option can be used to supply parameters to control the archive
manifest generation. The semantics of the keys and the allowed values for these keys
are implementation-defined. It is a dynamic error (err:XC0079) if the map parameters
contains an entry whose key is defined by the implementation and whose value is
not valid for that key.

The relative-to option, when present, is used in creating the value of the
manifest's c:entry/@href attribute. If the option is relative, it is made absolute
against the base URI of the element on which it is specified (p:with-option or the
step in case of a syntactic shortcut value). It is a dynamic error (err:XD0064) if the
base URI is not both absolute and valid according to [RFC 3986].

The generated manifest has the format as described in Section 2.3.1, “The archive
manifest”. Implementations must supply an c:entry element and its name and
content-type attributes for every entry in the archive. The value of the generated
manifest's c:entry/@href attribute will be determined in the same way as a base
URI of an unarchived document by Section 2.38, “p:unarchive”. It is a dynamic
error (err:XC0120) if the relative-to option is not present and the document on the
source port does not have a base URI. Additional information provided for entries
in p:archive-manifest is implementation-defined.

2.4.1. Overriding content types

The override-content-types option can be used to partially override the content-
type determination mechanism. If present, it must be an array of arrays, where the
inner arrays consist of exactly two strings:

• The first member in an inner array must be a regular expression as specified in
[XPath and XQuery Functions and Operators 3.1], section 7.61 “Regular

18

2. The required steps

Expression Syntax”. It is a dynamic error (err:XC0147) if the specified value is
not a valid XPath regular expression.

• The second member in an inner array must be a valid a MIME content-type. It is
a dynamic error (err:XD0079) if a supplied content-type is not a valid media type
of the form “type/subtype+ext” or “type/subtype”.

It is a dynamic error (err:XC0146) if the specified value for the override-content-
types option is not an array of arrays, where the inner arrays have exactly two
members of type xs:string.

Determining an archive entry's content-type is as follows:

• The XPath regular expressions (the first members of the inner arrays) will be
matched against the path of the entry in the archive. This will be done in the
order of appearance in the outer array (so order is significant). The matching is
done unanchored: it is a match if the regular expression matches part of the
entry's path. Informally: matching behaves like applying the XPath matches#2
function, like in matches($path-in-archive, $regular-expression).

Note
Depending on how archives are constructed, the path of an entry
in an archive can be with or without a leading slash. Usually it
will be without. For archives constructed by p:archive no
leading slash will be present.

• If a match is found, the content-type (the second member of the inner array for
which the match was found) is used as the entry's content-type.

• If no match was found for all inner arrays, the normal (implementation-defined)
mechanism for determining the content-type is used.

For example: setting the override-content-types option to [['.rels$',
'application/xml'], ['^special/', 'application/octet-stream']] means
that all files ending with .rels will get the content-type application/xml. All files

19

2. The required steps

in the archive's special directory (including sub-directories) will get the content-
type application/octet-stream.

Document properties

No document properties are preserved. The manifest has no base-uri.

2.5. p:cast-content-type
The p:cast-content-type step creates a new document by changing the media type
of its input. If the value of the content-type option and the current media type of
the document on source port are the same, this document will appear unchanged on
result port.

<p:declare-step type="p:cast-content-type">
 <p:input port="source" content-types="any"/>
 <p:output port="result" content-types="any"/>
 <p:option name="content-type" required="true" as="xs:string"/>
 <p:option name="parameters" as="map(xs:QName,item()*)?"/>
</p:declare-step>

The input document is transformed from one media type to another. It is a dynamic
error (err:XD0079) if a supplied content-type is not a valid media type of the form
“type/subtype+ext” or “type/subtype”. It is a dynamic error (err:XC0071) if the
p:cast-content-type step cannot perform the requested cast.

The parameters can be used to supply parameters to control casting. The semantics
of the keys and the allowed values for these keys are implementation-defined. It is a
dynamic error (err:XC0079) if the map parameters contains an entry whose key is
defined by the implementation and whose value is not valid for that key.

2.5.1. Casting from an XML media type

• Casting from one XML media type to another simply changes the “content-
type” document property.

20

2. The required steps

• Casting from an XML media type to an HTML media type changes the
“content-type” document property and removes any serialization property.

• Casting from an XML media type to a JSON media type converts the XML into
JSON. The precise nature of the conversion from XML to JSON is implementation-
defined. If the input document is an XML representation of JSON as defined in
[XPath and XQuery Functions and Operators 3.1], implementations must
produce the same result as fn:parse-json(fn:xml-to-json()) by default. If
the input document has a c:param-set document element, an instance of
map(xs:QName, xs:string) must be returned that represents the document's
c:param elements. The serialization property is removed.

• Casting from an XML media type to a text media type serializes the XML
document by calling fn:serialize($doc, $param) where $doc is the
document on the source port and $param is the serialization property of this
document. The resulting string is wrapped by a document node and returned on
the result port. The serialization property is removed.

• Casting from an XML media type to any other media type must support the case
where the input document is a c:data document. The resulting document will
have the specified media type and a representation that is the content of the
c:data element after decoding the base64 encoded content The serialization
property is removed.

It is a dynamic error (err:XC0072) if the c:data contains content is not a valid
base64 string.

It is a dynamic error (err:XC0073) if the c:data element does not have a
content-type attribute.

It is a dynamic error (err:XC0074) if the content-type is supplied and is not the
same as the content-type specified on the c:data element.

Casting from an XML media type to any other media type when the input
document is not a c:data document is implementation-defined.

21

2. The required steps

2.5.2. Casting from an HTML media type

• Casting from an HTML media type to an XML media type changes “content-
type” document property and removes any serialization property.

• Casting from an HTML media type to another HTML media type changes
“content-type” document property.

• Casting from an HTML media type to a JSON media type is implementation-
defined.

• Casting an an HTML media type to a text media type serializes the HTML
document by calling fn:serialize($doc, $param) where $doc is the
document on the source port and $param is the serialization property of this
document. The resulting string is wrapped by a document node and returned on
the result port. The serialization property is removed.

• Casting from an HTML media type to any other media type is implementation-
defined.

2.5.3. Casting from a JSON media type

• Casting from a JSON media type to an XML media type converts the JSON into
XML. An implementation must support the format specified in section “XML
Representation of JSON” of [XPath and XQuery Functions and Operators 3.1] as
default for the resulting XML. It is implementation-defined whether other result
formats are supported. The serialization property is removed.

• Casting from a JSON media type to an HTML media type is implementation-
defined.

• Casting from a JSON media type to another JSON media type changes
“content-type” document property.

• Casting from a JSON media type to a text media type serializes the JSON
document by calling fn:serialize($doc, $param) where $doc is the
document on the source port and $param is the serialization property of this
document. The resulting string is wrapped by a document node and returned on
the result port. The serialization property is removed.

22

2. The required steps

• Casting from a JSON media type to any other media type is implementation-
defined.

2.5.4. Casting from a text media type

• Casting from a text media type to an XML media type parses the text value of
the document on source port by calling fn:parse-xml. It is a dynamic
error (err:XD0049) if the text value is not a well-formed XML document. The
serialization property is removed.

• Casting from a text media type to an HTML media type parses the text value of
the document on source port into an XPath data model document that contains
a tree of elements, attributes, and other nodes. The precise way in which text
documents are parsed into the XPath data model is implementation-defined. It is a
dynamic error (err:XD0060) if the text document can not be converted into the
XPath data model. The serialization property is removed.

• Casting from a text media type to a JSON media type parses the text value of the
document on source port by calling fn:parse-json($doc, $par) where $doc
is the text document and $par is the parameter option. It is a dynamic
error (err:XD0057) if the text document does not conform to the JSON grammar,
unless the parameter liberal is true and the processor chooses to accept the
deviation. It is a dynamic error (err:XD0058) if the parameter duplicates is reject
and the text document contains a JSON object with duplicate keys. It is a dynamic
error (err:XD0059) if the parameter map contains an entry whose key is defined
in the specification of fn:parse-json and whose value is not valid for that key,
or if it contains an entry with the key fallback when the parameter escape with
true() is also present. The serialization property is removed.

• Casting from a text media type to another text media type changes “content-
type” document property.

• Casting from a text media type to any other media type is implementation-defined.

23

2. The required steps

2.5.5. Casting from any other media type

• Casting from a non-XML media type to an XML media type produces an XML
document with a c:data document element. The original media type will be
preserved in the content-type attribute on the c:data element.

<c:data
 content-type = ContentType
 charset? = string
 encoding? = string>
 string
</c:data>

The content of the c:data element is the base64 encoded representation of the
non-XML content. The serialization property is removed.

• Casting from any other media type to a HTML media type, a JSON media type
or a text document is implementation-defined.

• Casting from any other media type to any other media type is implementation-
defined.

Document properties

All document properties are preserved except the content-type property which is
updated accordingly and the serialization property which is removed by some
casting methods.

2.6. p:compare
The p:compare step compares two documents for equality.

<p:declare-step type="p:compare">
 <p:input port="source" primary="true" content-types="any"/>
 <p:input port="alternate" content-types="any"/>
 <p:output port="result" content-types="application/xml"/>
 <p:output port="differences" content-types="any" sequence="true"/>
 <p:option name="parameters" as="map(xs:QName,item()*)?"/>
 <p:option name="method" as="xs:QName?"/>
 <p:option name="fail-if-not-equal" as="xs:boolean" select="false()"/>
</p:declare-step>

24

2. The required steps

This step takes single documents on each of two ports and compares them. If method
is not specified, or if deep-equal is specified, the comparison uses fn:deep-equal
(as defined in [XPath and XQuery Functions and Operators 3.1]). Implementations of
p:compare must support the deep-equal method; other supported methods are
implementation-defined. It is a dynamic error (err:XC0076) if the comparison method
specified in p:compare is not supported by the implementation. It is a dynamic
error (err:XC0077) if the media types of the documents supplied are incompatible
with the comparison method.

It is a dynamic error (err:XC0019) if the documents are not equal according to the
specified comparison method, and the value of the fail-if-not-equal option is
true. If the documents are equal, or if the value of the fail-if-not-equal option is
false, a c:result document is produced with contents true if the documents are
equal, otherwise false.

If fail-if-not-equal is false, and the documents differ, an implementation-defined
summary of the differences between the two documents may appear on the
differences port.

Document properties

No document properties are preserved. The comparison document has no base-uri.

2.7. p:compress
The p:compress step serializes the document appearing on its source port and
outputs a compressed version of this on its result port.

<p:declare-step type="p:compress">
 <p:input port="source" primary="true" content-types="any"
sequence="false"/>
 <p:output port="result" primary="true" content-types="any"
sequence="false"/>
 <p:option name="format" as="xs:QName" select="'gzip'"/>
 <p:option name="serialization" as="map(xs:QName,item()*)?"/>
 <p:option name="parameters" as="map(xs:QName, item()*)?"/>
</p:declare-step>

25

2. The required steps

The p:compress step first serializes the document appearing on its source. It then
compresses the outcome of this serialization and outputs the result on its result
port.

The p:compress step has the following options:

format
The format of the compression can be specified using the format option.
Implementations must support the [GZIP] format, specified with the value gzip.
It is implementation-defined what other formats are supported. It is a dynamic
error (err:XC0202) if the compression format cannot be understood, determined
and/or processed.

parameters
The parameters option can be used to supply parameters to control the
compression. The semantics of the keys and the allowed values for these keys
are implementation-defined. It is a dynamic error (err:XC0079) if the map
parameters contains an entry whose key is defined by the implementation and
whose value is not valid for that key.

serialization
The serialization option is provided to control the serialization of content
before compression takes place. If the document to be stored has a
serialization property, the serialization is controlled by the merger of the two
maps where the entries in the serialization property take precedence.
Serialization is described in [XProc 3.0].

Document properties

All document properties are preserved, except for the content-type property which
is updated accordingly and the serialization property which is removed.

2.8. p:count
The p:count step counts the number of documents in the source input sequence and
returns a single document on result containing that number. The generated

26

2. The required steps

document contains a single c:result element whose contents is the string
representation of the number of documents in the sequence.

<p:declare-step type="p:count">
 <p:input port="source" content-types="any" sequence="true"/>
 <p:output port="result" content-types="application/xml"/>
 <p:option name="limit" as="xs:integer" select="0"/>
</p:declare-step>

If the limit option is specified and is greater than zero, the p:count step will count
at most that many documents. This provides a convenient mechanism to discover, for
example, if a sequence consists of more than 1 document, without requiring every
single document to be buffered before processing can continue.

Document properties

No document properties are preserved. The count document has no base-uri.

2.9. p:delete
The p:delete step deletes items specified by a selection pattern from the source input
document and produces the resulting document, with the deleted items removed, on
the result port.

<p:declare-step type="p:delete">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="text xml html"/>
 <p:option name="match" required="true" as="xs:string"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. A selection pattern
may match multiple items to be deleted.

If an element is selected by the match option, the entire subtree rooted at that element
is deleted.

It is a dynamic error (err:XC0023) if the match option matches the document node.

27

2. The required steps

This step cannot be used to remove namespaces. It is a dynamic error (err:XC0062) if
the match option matches a namespace node. Also, note that deleting an attribute
named xml:base does not change the base URI of the element on which it occurred.

Document properties

If the resulting document contains exactly one text node, the content-type property
is changed to text/plain and the serialization property is removed, while all
other document properties are preserved. In all other cases, all document properties
are preserved.

2.10. p:error
The p:error step generates a dynamic error using the input provided to the step.

<p:declare-step type="p:error">
 <p:input port="source" sequence="true" content-types="text xml"/>
 <p:output port="result" sequence="true" content-types="any"/>
 <p:option name="code" required="true" as="xs:QName"/>
</p:declare-step>

This step uses the document provided on its input as the content of the error raised.
An instance of the c:errors element will be produced on the error output port, as is
always the case for dynamic errors. The error generated can be caught by a p:try just
like any other dynamic error.

For authoring convenience, the p:error step is declared with a single, primary
output port. With respect to connections, this port behaves like any other output port
even though nothing can ever appear on it since the step always fails.

For example, given the following invocation:

<p:error xmlns:my="http://www.example.org/error"
 name="bad-document" code="my:unk12">
 <p:with-input port="source">
 <message>The document element is unknown.</message>
 </p:with-input>
</p:error>

28

2. The required steps

The error vocabulary element (and document) generated on the error output port
would be:

<c:errors xmlns:c="http://www.w3.org/ns/xproc-step"
 xmlns:p="http://www.w3.org/ns/xproc"
 xmlns:my="http://www.example.org/error">
 <c:error name="bad-document" type="p:error"
 code="my:unk12"><message
 >The document element is unknown.</message>
</c:error>
</c:errors>

The href, line and column, or offset, might also be present on the c:error to
identify the location of the p:error element in the pipeline.

Document properties

No document properties are preserved but that’s irrelevant as no document is ever
produced.

2.11. p:filter
The p:filter step selects portions of the source document based on a (possibly
dynamically constructed) XPath select expression.

<p:declare-step type="p:filter">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" sequence="true" content-types="text xml html"/>
 <p:option name="select" required="true" as="xs:string"/>
</p:declare-step>

This step behaves just like an p:input with a select expression except that the
select expression is computed dynamically.

Document properties

No document properties are preserved. The base-uri property of each document
will reflect the base URI of the selected node(s).

29

2. The required steps

2.12. p:hash
The p:hash step generates a hash, or digital “fingerprint”, for some value and injects
it into the source document.

<p:declare-step type="p:hash">
 <p:input port="source" primary="true" content-types="xml html"/>
 <p:output port="result" content-types="text xml html"/>
 <p:option name="parameters" as="map(xs:QName,item()*)?"/>
 <p:option name="value" required="true" as="xs:string"/>
 <p:option name="algorithm" required="true" as="xs:QName"/>
 <p:option name="match" as="xs:string" select="'/*/node()'"/>
 <p:option name="version" as="xs:string?"/>
</p:declare-step>

The value of the algorithm option must be a QName. If it does not have a prefix,
then it must be one of the following values: “crc”, “md”, or “sha”.

If a version is not specified, the default version is algorithm-defined. For “crc” it is
32, for “md” it is 5, for “sha” it is 1.

A hash is constructed from the string specified in the value option using the
specified algorithm and version. Implementations must support [CRC32], [RFC
1321], and [SHA1] hashes. It is implementation-defined what other algorithms are
supported. The resulting hash should be returned as a string of hexadecimal
characters.

The value of the match option must be an XSLTSelectionPattern.

The hash of the specified value is computed using the algorithm and parameters
specified. It is a dynamic error (err:XC0036) if the requested hash algorithm is not one
that the processor understands or if the value or parameters are not appropriate for
that algorithm.

The matched nodes are specified with the selection pattern in the match option. For
each matching node, the string value of the computed hash is used in the output (if
more than one node matches, the same hash value is used in each match). Nodes that
do not match are copied without change.

If the expression given in the match option matches an attribute, the hash is used as
the new value of the attribute in the output. If the attribute is named “xml:base”, the
base URI of the element must also be amended accordingly.

30

2. The required steps

If the document node is matched, the entire document is replaced by a text node with
the hash. What appears on port result is a text document with the text node
wrapped in a document node.

If the expression matches any other kind of node, the entire node (and not just its
contents) is replaced by the hash.

Document properties

If the resulting document contains exactly one text node, the content-type property
is changed to text/plain and the serialization property is removed, while all
other document properties are preserved. For other document types, all document
properties are preserved.

2.13. p:http-request
The p:http-request step allows authors to interact with resources over HTTP or
related protocols. Implementations must support the http and https protocols.
(Implementors are encouraged to support as many protocols as practical. In
particular, pipeline authors may attempt to use p:http-request to load documents
with computed URIs using the file: scheme.)

<p:declare-step type="p:http-request">
 <p:input port="source" content-types="any" sequence="true"/>
 <p:output port="result" primary="true" content-types="any"
sequence="true"/>
 <p:output port="report" content-types="application/json"/>
 <p:option name="href" as="xs:anyURI" required="true"/>
 <p:option name="method" as="xs:string?" select="'GET'"/>
 <p:option name="serialization" as="map(xs:QName,item()*)?"/>
 <p:option name="headers" as="map(xs:string, xs:string)?"/>
 <p:option name="auth" as="map(xs:string, item()+)?"/>
 <p:option name="parameters" as="map(xs:QName, item()*)?"/>
 <p:option name="assert" as="xs:string" select="'.?status-code lt 400'"/>
</p:declare-step>

The p:http-request step performs the HTTP request specified by the method option
against the URI specified in the href option. In simple cases, for example, a GET
request on an unauthenticated URI, nothing else is necessary to form a complete
request.

31

2. The required steps

If the method, for example, POST, supports a body, the request body is constructed
using the document(s) appearing on the source port. For the convenience of pipeline
authors, documents may appear on the source port even when the request method
(such as GET or HEAD) does not define the semantics of a payload. If the semantics
are undefined, the documents are ignored when constructing the request unless the
parameters option specifies “send-body-anyway” as true().

The headers for the request come from the headers option (see below). If exactly one
document appears on the source port, its document properties also contribute to the
overall request headers.

The response from the HTTP request appears on the result and report ports. Any
documents contained in the response body will appear on the result port. Each
document in the response will be parsed according to its content-type (but see
“override-content-type” in the parameters option). Details about the outcome of
the request will appear as a map on the report port. The map will always contain:

status-code (an xs:integer)
This is the HTTP status code returned for the request.

base-uri (an xs:anyURI)
This is the URI of the last request made and is always available in the report
even when the request does not return any documents. In the case of HTTP
redirection, the base URI returned may be different from the original request
URI.

headers (a map(xs:string, xs:string))
These are the HTTP headers returned for the request. The map may be empty.
Header names are converted to lowercase.

The p:http-request step has the following options:

href
The href option specifies the request’s IRI. Relative values are resolved against
the base URI of the element on which the option is specified (the relevant
p:with-option or the step element in the case of a syntactic shortcut value).

Fragment identifiers are removed before making the request. Query parameters
are passed through unchanged. It is a dynamic error (err:XC0128) if the URI’s
scheme is unknown or not supported. It is the pipeline author’s responsibility to

32

2. The required steps

escape problematic UTF-8 characters in the href value, for example with
escape-html-uri().

method
The method specifies the HTTP request method. The value is implicitly turned
into an uppercase string if necessary. It is implementation defined which HTTP
methods are supported. An implementation should implement at least the
methods GET, POST, PUT, DELETE, and HEAD (for HTTP and HTTPS). It is a
dynamic error (err:XC0122) if the given method is not supported.

serialization
The serialization option is used to control the serialization of documents for
the request body. If a document has a “serialization” document property, the
effective value of the serialization options is the union of the two maps, where
the entries in the “serialization” document property take precedence.

headers
The key/value pairs in the headers map are used to construct the request
headers. Each map key is used as a header name and the value associated with
that key in the map is used as the header value.

If a single document appears on the source port, then document properties on
that document may be added as additional headers. For XML, HTML, and text
documents with a serialization document property having an encoding key,
a charset is appended to the created content-type header of the HTTP
request. Properties in the http://www.w3.org/ns/xproc-http namespace will
be added to the headers, using the local-name of the property QName as the
header name. These properties are only copied if they are not specified in the
header map. In other words, if the same header name appears in both places,
the value from the map is used and the value from the document properties is
ignored. (Header names are case-insensitive, so a case-insensitive comparison
must be performed.) If multiple documents appear on the source port, none of
their properties are used in the request headers.

The behavior of the p:http-request depends on the headers specified. In
particular:

33

2. The required steps

content-type
If a content-type header is provided, it will be used. For a single
document request, this overrides the content type value of the document. If
the content type specified begins with “multipart/”, a multipart request
will be sent to the server.

It is a dynamic error (err:XD0079) if a supplied content-type is not a valid
media type of the form “type/subtype+ext” or “type/subtype”.

transfer-encoding
If a transfer-encoding header is provided, the request must be sent with
that encoding. It is a dynamic error (err:XC0131) if the processor cannot
support the requested encoding.

authorization
The authorization header is used to authenticate a request. If the auth
option is specified, any key or property that would have contributed a
header named “authorization” (irrespective of case) is ignored. The
authorization header is determined exclusively by the auth option when it
is present.

HTTP headers are case-insensitive but keys in maps are not; be careful when
specifying the request headers. It is a dynamic error (err:XC0127) if the headers
map contains two keys that are the same when compared in a case-insensitive
manner. (That is, when fn:uppercase($key1) = fn:uppercase($key2).)

auth
Many web services are only available to authenticated users, that is, to users
who have “logged in”. The auth option allows the pipeline author to specify
information that may be required to generate an “Authorization” header. The
standard values support HTTP “Basic” and “Digest” authentication, but other
authentication methods are allowed.

The following standard keys are defined:

username (xs:string)
The username.

password (xs:string)
The password associated with the username.

34

2. The required steps

auth-method (xs:string)
The authentication method. Appropriate values for the “auth-method” key
are “Basic” or “Digest” but other values are allowed. If the authentication
method is “Basic” or “Digest”, authentication is handled as per [RFC
2617]. The interpretation of values associated with the “auth-method” key
other than “Basic” or “Digest” is implementation defined.

send-authorization (xs:boolean)
The “send-authorization” key can be used to attempt to allow the request
to avoid an authentication challenge. If the “send-authorization” key is
“true()”, and the authentication method specified by the value associated
with the “auth-method” key supports generation of an “Authorization”
header without a challenge, then the header is generated and sent on the
first request. If the “send-authorization” key is absent or does not have
the value “true”, the first request is sent without an “Authorization”
header.

Other key value pairs in map “auth” are implementation defined. It is a dynamic
error (err:XC0123) if any key in the “auth” map is associated with a value that is
not an instance of the required type.

If the initial response to the request is an authentication challenge, the values
provided in the auth map and any relevant data from the challenge are used to
generate an “Authorization” header and the request is sent again. If that
authorization fails, the request is not retried.

It is a dynamic error (err:XC0003) if a “username” or a “password” key is present
without specifying a value for the “auth-method” key, if the requested auth-
method isn't supported, or the authentication challenge contains an
authentication method that isn't supported. All implementations must support
“Basic” and “Digest” authentication per [RFC 2617].

parameters
The parameter option can be used to provide values for fine tuning the
construction of the request and/or handling of the server response. A number of
parameters are defined in this specification. It is implementation defined which
other key/value pairs in the parameters option are supported.

35

2. The required steps

override-content-type (xs:string)
Ordinarily, the value of the content-type header provided in the server
response controls the interpretation of any body in the response. If the
“override-content-type” parameter is provided, then its value is used to
interpret the body. The content-type header that appears on the report port
is not changed. It is a dynamic error (err:XD0079) if a supplied content-type
is not a valid media type of the form “type/subtype+ext” or “type/
subtype”. It is a dynamic error (err:XC0030) if the response body cannot be
interpreted as requested (e.g. application/json to override
application/xml content).

http-version (xs:string)
The http-version parameter indicates which version of HTTP must be
used for the request.

accept-multipart (xs:boolean)
If the accept-multipart parameter is present and explicitly has the value
false(), a dynamic error will be raised, if a multipart response is received
from the server. This feature is a convenience for pipeline authors as it will
raise an error when the multipart request is received, rather than having the
presence of a sequence raise an error further along in the pipeline, or simply
producing anomalous results. It is a dynamic error (err:XC0125) if the key
“accept-multipart” as the value false() and a multipart response is
detected.

override-content-encoding (xs:string)
If the “override-content-encoding” parameter is present, the response
will be treated as if the response contained a “content-encoding” header
with the specified value. The content-encoding header that appears on the
report port is not changed. It is a dynamic error (err:XC0132) if the override
content encoding cannot be supported.

permit-expired-ssl-certificate (xs:boolean)
If “permit-expired-ssl-certificate” is true, then the processor should
not reject responses where the server provides an expired SSL certificate.

permit-untrusted-ssl-certificate (xs:boolean)
If “permit-untrusted-ssl-certificate” is true, then the processor
should not reject response where the server provides an SSL certificate

36

2. The required steps

which is not trusted, for example, because the certificate authority (CA) is
unknown.

follow-redirect (xs:integer)
The “follow-redirect” parameter allows the pipeline author to specify
the step’s behaviour in the case of a redirect response. A value of 0 indicates
that redirects are not to be followed, -1 indicates that redirects are to be
followed indefinitely, and a specific number indicates the maximum
number of redirects to follow. The default behaviour in case of a redirect
response is implementation defined.

timeout (xs:integer)
If a “timeout” is specified, it must be a non-negative integer. It controls the
time the XProc processor waits for the request to be answered. If a value is
given, it is taken as the number of seconds to wait for the response to be
delivered. If no response is received after that time, the request is
terminated and a status-code 408 is assumed.

fail-on-timeout (xs:boolean)
If “fail-on-timeout” is true, a dynamic error is raised if a 408 response is
received (either as a consequence of setting a value for the “timeout”
parameter or as status code returned by a server). It is a dynamic
error (err:XC0078) if the value associated with the “fail-on-timeout” is
associated with true() and a HTTP status code 408 is encountered. If
“fail-on-timeout” is true, it prevents any dynamic error with code C0126
resulting from the assert option to be raised for request's timeout.

Note
Please note that the “fail-on-timeout” parameter is
different from the “timeout” option on the p:http-
request step (see Controlling long running steps in XProc 3.0:
An XML Pipeline Language). If the step does not finish in the
specified time, D0053 is raised. If the request does not finish
in time, and fail-on-timeout is true, C0078 is raised. The
actual times after which a timeout is detected may also
differ slightly.

37

2. The required steps

https://spec.xproc.org/3.0/xproc/#timeout
https://spec.xproc.org/3.0/xproc/
https://spec.xproc.org/3.0/xproc/

status-only (xs:boolean)
If the “status-only” parameter is true, this indicates that the pipeline
author is only interested in the response code. An empty sequence is always
returned on the result port in this case. The implementation may save
resources by ignoring the response body. The map on the report will
contain the status code and an empty map for “headers”.

suppress-cookies (xs:boolean)
If the “suppress-cookies” parameter is true, the implementation must not
send any cookies with the request.

send-body-anyway (xs:boolean)
If the “send-body-anyway” parameter is true, and one or more documents
appear on the source port, a request body is constructed from the
documents and sent with the request, even if the semantics of sending a
body are not specified for the HTTP method in use.

It is a dynamic error (err:XC0124) if any key in the “parameters” map is
associated with a value that is not an instance of the required type.

assert (xs:string)
The assert option can be used by pipeline authors to raise a dynamic error if
the response does not fulfill the expectations of the receiver. The option's value
(if present) is interpreted as an XPath expression which will be executed using
the map that appears on the report port as its context item. If the effective
boolean value of the expression is false(), a dynamic error is raised. It is a
dynamic error (err:XC0126) if the XPath expression in assert evaluates to
false. Implementations should provide an XML representation of the map used
as the context item with the error document to enable pipelines to access the
error's cause.

2.13.1. Construction of a multipart request

If more than one document appears on the source port, or if the specified “content-
type” header begins “multipart/”, a multipart request will be constructed, per
[RFC 1521]. The content type of the request is derived from the “content-type”
header:

38

2. The required steps

• If the “content-type” header specifies a multipart content type, that value will
be used as the content type. If the header includes a boundary parameter, that
value will be used as the boundary. It is a dynamic error (err:XC0203) if the
specified boundary is not valid (for example, if it begins with two hyphens “--”).

• If the “content-type” header is not specified, “multipart/mixed” will be used.

• It is a dynamic error (err:XC0133) if more than one document appears on the
source port and a content-type header is present and the content type
specified is not a multipart content type.

A multipart request must have a boundary marker, if one isn’t specified in the
content type, the implementation must construct one. It is implementation-defined how
a multipart boundary is constructed. Implementations are not required to guarantee
that the constructed value does not appear accidentally in the multipart data. If it
does, the request will be malformed; pipeline authors must provide a boundary if
they wish to assure that this cannot happen.

Each document in the sequence is serialized. If the document has a “serialization”
document property, its values are used to determine how serialization is performed.

All of the document properties in the http://www.w3.org/ns/xproc-http
namespace will be added as headers for the part, using the local-name of the
property QName as the header name. In particular, this is how the “id”,
“description”, “disposition” and other multipart headers can be provided.

2.13.2. Managing a multipart response

When a multipart response is received, each part is interpreted according to it’s
content type and a pipeline document is constructed. Any additional headers
associated with the part are added to the document properties of the constructed
document.

The multipart response is the resulting sequence of documents.

39

2. The required steps

Document properties

No document properties are preserved.

2.14. p:identity
The p:identity step makes a verbatim copy of its input available on its output.

<p:declare-step type="p:identity">
 <p:input port="source" sequence="true" content-types="any"/>
 <p:output port="result" sequence="true" content-types="any"/>
</p:declare-step>

If the implementation supports passing PSVI annotations between steps, the
p:identity step must preserve any annotations that appear in the input.

Document properties

All document properties are preserved.

2.15. p:insert
The p:insert step inserts the insertion port's document into the source port's
document relative to the matching elements in the source port's document.

<p:declare-step type="p:insert">
 <p:input port="source" primary="true" content-types="xml html"/>
 <p:input port="insertion" sequence="true" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="match" as="xs:string" select="'/*'"/>
 <p:option name="position" values="('first-child','last-
child','before','after')" select="'after'"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if that pattern matches an attribute or a namespace node. Multiple
matches are allowed, in which case multiple copies of the insertion documents will
occur. If no elements match, then the document is unchanged.

The value of the position option must be an NMTOKEN in the following list:

40

2. The required steps

• “first-child” - the insertion is made as the first child of the match;

• “last-child” - the insertion is made as the last child of the match;

• “before” - the insertion is made as the immediate preceding sibling of the
match;

• “after” - the insertion is made as the immediate following sibling of the match.

It is a dynamic error (err:XC0025) if the selection pattern matches anything other than
an element or a document node and the value of the position option is “first-
child” or “last-child”. It is a dynamic error (err:XC0024) if the selection pattern
matches a document node and the value of the position is “before” or “after”.

As the inserted elements are part of the output of the step they are not considered in
determining matching elements. If an empty sequence appears on the insertion
port, the result will be the same as the source.

Document properties

All document properties on the source port are preserved. The document properties
on the insertion port are not preserved or present in the result document.

2.16. p:json-join
The p:json-join step joins the sequence of documents on port source into a single
JSON document (an array) appearing on port result. If the sequence on port source
is empty, the empty sequence is returned on port result.

<p:declare-step type="p:json-join">
 <p:input port="source" sequence="true" content-types="any"/>
 <p:output port="result" content-types="application/json"/>
 <p:option name="flatten-to-depth" as="xs:string?" select="'0'"/>
</p:declare-step>

The step inspects the documents on port source in turn to create the resulting array:

41

2. The required steps

• If the document under inspection is a JSON document representing an array, the
array is copied to the resulting array according to the setting of option flatten-
to-depth.

• For every other type of JSON document, for XML documents, HTML
documents, or text documents, their XDM representation is appended to the
resulting array.

• It is implementation defined if p:json-join is able to process document types not
mentioned yet, i.e. types of binary documents. If a processor supports a given
type of documents, an entry is created as described above. It is a dynamic
error (err:XC0111) if a document of an unsupported document type appears on
port source of p:json-join.

The option flatten-to-depth controls whether and to which depth members of an
array appearing on port source are flattened. It is a dynamic error (err:XC0119) if
flatten is neither “unbounded”, nor a string that may be cast to a non-negative
integer. An integer value of 0, which is the default, means that no flattening takes
place, so the array appearing on port source will be contained as an array in the
resulting array. An integer value of 1 means that an array on port source is flattened,
i.e. the members of that array will appear as individual members in the resulting
array. Any value greater than 1 means that the flattening is applied recursively to
arrays in arrays up to the given depth. A value of “unbounded” means that all arrays
in arrays will be flattened. As a consequence, the resulting array appearing on port
result will not have any arrays as members.

Document properties

No document properties are preserved. The joined document has no base-uri.

2.17. p:json-merge
The p:json-merge step merges the sequence of appearing on port source into a
single JSON object appearing on port result. If the sequence on port source is
empty, the empty sequence is returned on port result.

42

2. The required steps

<p:declare-step type="p:json-merge">
 <p:input port="source" sequence="true" content-types="any"/>
 <p:output port="result" content-types="application/json"/>
 <p:option name="duplicates" values="('reject', 'use-first', 'use-last',
'use-any', 'combine')" select="'use-first'"/>
 <p:option name="key" as="xs:string" select="'concat("_",$p:index)'"/>
</p:declare-step>

The step inspects the documents on port source in turn to create the resulting map:

• If the document under inspection is a JSON document representing a map, all
key-value pairs are copied into the result map unless this map already contains
an entry with the given key. In this case the value of option duplicates
determines the policy for handling duplicate keys as specified for function
map:merge in [XPath and XQuery Functions and Operators 3.1]. It is a dynamic
error (err:XC0106) if duplicate keys are encountered and option duplicates has
value “reject”.

• For every other type of JSON document, for XML documents, HTML
documents, or text documents a new key-value pair is created and put into the
resulting map. The key is created by evaluating the XPath expression in option
key with the inspected document as context item. If the evaluation result is a
single atomic value, it is taken as key. If the evaluation result is a node, its string
value is taken as key. It is a dynamic error (err:XC0110) if the evaluation of the
XPath expression in option key for a given item returns either a sequence, an
array, a map, or a function. Duplicate keys are handled as described above. The
XDM representation of the inspected document is taken as value of the key-
value pair.

• It is implementation defined if p:json-merge is able to process document types not
mentioned yet, i.e. types of binary documents. If a processor supports a given
type of documents, the key-value pair is created as described above. It is a
dynamic error (err:XC0107) if a document of a not supported document type
appears on port source of p:json-merge.

An implementation must bind the variable “p:index” in the static context of each
evaluation of the XPath expression to the position of the document in the sequence of
documents on port source, starting with “1”.

43

2. The required steps

Document properties

No document properties are preserved. The merged document has no base-uri.

2.18. p:label-elements
The p:label-elements step generates a label for each matched element and stores
that label in the specified attribute.

<p:declare-step type="p:label-elements">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="attribute" as="xs:QName" select="'xml:id'"/>
 <p:option name="label" as="xs:string" select="'concat("_",$p:index)'"/>
 <p:option name="match" as="xs:string" select="'*'"/>
 <p:option name="replace" as="xs:boolean" select="true()"/>
</p:declare-step>

The value of the label option is an XPath expression used to generate the value of
the attribute label.

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if that expression matches anything other than element nodes.

The value of the replace must be a boolean value and is used to indicate whether
existing attribute values are replaced.

This step operates by generating attribute labels for each element matched. For every
matched element, the expression is evaluated with the context node set to the
matched element. An attribute is added to the matched element using the attribute
name is specified the attribute option and the string value of result of evaluating
the expression. If the attribute already exists on the matched element, the value is
replaced with the string value only if the replace option has the value of true.

If this step is used to add or change the value of an attribute named “xml:base”, the
base URI of the element must also be amended accordingly.

An implementation must bind the variable “p:index” in the static context of each
evaluation of the XPath expression to the position of the element in the sequence of
matched elements. In other words, the first element (in document order) matched
gets the value “1”, the second gets the value “2”, the third, “3”, etc.

44

2. The required steps

The result of the p:label-elements step is the input document with the attribute labels
associated with matched elements. All other non-matching content remains the same.

Document properties

All document properties are preserved.

2.19. p:load
The p:load step has no inputs but produces as its result a document specified by an
IRI.

<p:declare-step type="p:load">
 <p:output port="result" content-types="any"/>
 <p:option name="href" required="true" as="xs:anyURI"/>
 <p:option name="parameters" as="map(xs:QName,item()*)?"/>
 <p:option name="content-type" as="xs:string?"/>
 <p:option name="document-properties" as="map(xs:QName, item()*)?"/>
</p:declare-step>

If the option is relative, it is made absolute against the base URI of the element on
which it is specified (p:with-option or the step in case of a syntactic shortcut value).
If the href is relative, it is made absolute against the base URI of the element on
which it is specified (p:with-option or p:load in the case of a syntactic shortcut
value). It is a dynamic error (err:XD0064) if the base URI is not both absolute and
valid according to [RFC 3986].

The document identified by the href URI is loaded and returned. If the URI protocol
supports redirection, then redirects must be followed.

It is a dynamic error (err:XD0011) if the resource referenced by a p:load element does
not exist or cannot be accessed.

The behavior of this step depends on the content type of the document loaded. The
content type of a document is determined as follows:

1. If a content-type property is specified in document-properties or content-
type is present, then the document must be interpreted according to that content
type. It is a dynamic error (err:XD0079) if a supplied content-type is not a valid

45

2. The required steps

media type of the form “type/subtype+ext” or “type/subtype”. It is a dynamic
error (err:XD0062) if the content-type is specified and the document-
properties has a “content-type” that is not the same.

2. If the document is retrieved with a URI protocol that specifies a content type (for
example, http:), then the document must be interpreted according to that
content type.

3. In the absence of an explicit type, the content type is implementation-defined.

The parameters map contains additional, optional parameters that may influence
the way that content is loaded. The interpretation of this map varies according to the
content type. Parameter names that are in no namespace are treated as strings using
only the local-name where appropriate.

Broadly speaking, there are five categories of data that might be loaded: XML, text,
JSON, HTML, and “other” binary data.

2.19.1. Loading XML data

For an XML media type, the content is loaded and parsed as XML.

It is a dynamic error (err:XD0049) if the loaded content is not a well-formed XML
document.

If the dtd-validate parameter is true, then DTD validation must be performed
when parsing the document. It is a dynamic error (err:XD0023) if a DTD validation is
performed and either the document is not valid or no DTD is found. It is a dynamic
error (err:XD0043) if the dtd-validate parameter is true and the processor does
not support DTD validation.

Additional XML parameters are implementation-defined.

2.19.2. Loading text data

For a text media type, the content is loaded as a text document. (A text document is
an XPath data model document consisting of a single text node.)

46

2. The required steps

It is a dynamic error (err:XD0060) if the content-type specifies an encoding, which
is not supported by the processor.

Text parameters are implementation-defined.

2.19.3. Loading JSON data

For a JSON media type, the content is loaded and parsed as JSON.

The parameters specified for the fn:parse-json function in [XPath and XQuery
Functions and Operators 3.1] must be supported. Additional JSON parameters are
implementation-defined.

It is a dynamic error (err:XD0057) if the loaded content does not conform to the JSON
grammar, unless the parameter liberal is true and the processor chooses to accept
the deviation.

It is a dynamic error (err:XD0058) if the parameter duplicates is reject and the
value of loaded content contains a JSON object with duplicate keys.

It is a dynamic error (err:XD0059) if the parameter map contains an entry whose key
is defined in the specification of fn:parse-json and whose value is not valid for that
key, or if it contains an entry with the key fallback when the parameter escape with
true() is also present.

2.19.4. Loading HTML data

For an HTML media type, the content is loaded and parsed into an XPath data model
document that contains a tree of elements, attributes, and other nodes.

The precise way in which HTML documents are parsed into the XPath data model is
implementation-defined.

It is a dynamic error (err:XD0078) if the loaded document cannot be represented as an
HTML document in the XPath data model.

HTML parameters are implementation-defined.

47

2. The required steps

2.19.5. Loading binary data

An XProc processor may load other, arbitrary data types. How a processor interprets
other media types is implementation-defined.

Parameters for other media types are implementation-defined.

Document properties

The properties specified in document-properties are applied. If the properties do
not specify a base-uri, the base-uri property will reflect the base URI of the loaded
document.

2.20. p:make-absolute-uris
The p:make-absolute-uris step makes an element or attribute's value in the source
document an absolute IRI value in the result document.

<p:declare-step type="p:make-absolute-uris">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="match" required="true" as="xs:string"/>
 <p:option name="base-uri" as="xs:anyURI?"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if the pattern matches anything other than element or attribute
nodes.

The value of the base-uri option must be an anyURI. It is interpreted as an IRI
reference. If it is relative, it is made absolute against the base URI of the element on
which it is specified (p:with-option or p:make-absolute-uris in the case of a
syntactic shortcut value). It is a dynamic error (err:XD0064) if the base URI is not both
absolute and valid according to [RFC 3986].

For every element or attribute in the input document which matches the specified
pattern, its XPath string-value is resolved against the specified base URI and the
resulting absolute IRI is used as the matched node's entire contents in the output.

48

2. The required steps

The base URI used for resolution defaults to the matched attribute's element or the
matched element's base URI unless the base-uri option is specified. When the base-
uri option is specified, the option value is used as the base URI regardless of any
contextual base URI value in the document. This option value is resolved against the
base URI of the p:option element used to set the option.

If the IRI reference specified by the base-uri option on p:make-absolute-uris is
absent and the input document has no base URI, the results are implementation-
dependent.

Document properties

All document properties are preserved.

2.21. p:namespace-delete
The p:namespace-delete step deletes all of the namespaces identified by the
specified prefixes from the document appearing on port source.

<p:declare-step type="p:namespace-delete">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="prefixes" required="true" as="xs:string"/>
</p:declare-step>

The value of option prefixes is taken as a space separated list of prefixes. It is a
dynamic error (err:XC0108) if any prefix is not in-scope at the point where the
p:namespace-delete occurs.

For any prefix the associated namespace is removed from the elements and attributes
in the document appearing on port source. The respective elements or attributes in
the document appearing on port result will be in no namespace.

It is a dynamic error (err:XC0109) if a namespace is to be removed from an attribute
and the element already has an attribute with the resulting name.

49

2. The required steps

Document properties

All document properties are preserved.

2.22. p:namespace-rename
The p:namespace-rename step renames any namespace declaration or use of a
namespace in a document to a new IRI value.

<p:declare-step type="p:namespace-rename">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="from" as="xs:anyURI?"/>
 <p:option name="to" as="xs:anyURI?"/>
 <p:option name="apply-to" select="'all'"
values="('all','elements','attributes')"/>
</p:declare-step>

The value of the from option must be an anyURI. It should be either empty or
absolute, but will not be resolved in any case.

The value of the to option must be an anyURI. It should be empty or absolute, but
will not be resolved in any case.

The value of the apply-to option must be one of “all”, “elements”, or
“attributes”. If the value is “elements”, only elements will be renamed, if the
value is “attributes”, only attributes will be renamed, if the value is “all”, both
elements and attributes will be renamed.

It is a dynamic error (err:XC0014) if the XML namespace (http://www.w3.org/XML/
1998/namespace) or the XMLNS namespace (http://www.w3.org/2000/xmlns/) is
the value of either the from option or the to option.

If the value of the from option is the same as the value of the to option, the input is
reproduced unchanged on the output. Otherwise, namespace bindings, namespace
attributes and element and attribute names are changed as follows:

• Namespace bindings: If the from option is present and its value is not the empty
string, then every binding of a prefix (or the default namespace) in the input
document whose value is the same as the value of the from option is

50

2. The required steps

◦ replaced in the output with a binding to the value of the to option,
provided it is present and not the empty string;

◦ otherwise (the to option is not specified or has an empty string as its value)
absent from the output.

If the from option is absent, or its value is the empty string, then no bindings are
changed or removed.

• Elements and attributes: If the from option is present and its value is not the
empty string, for every element and attribute, as appropriate, in the input whose
namespace name is the same as the value of the from option, in the output its
namespace name is

◦ replaced with the value of the to option, provided it is present and not the
empty string;

◦ otherwise (the to option is not specified or has an empty string as its value)
changed to have no value.

If the from option is absent, or its value is the empty string, then for every
element and attribute, as appropriate, whose namespace name has no value, in
the output its namespace name is set to the value of the to option.

It is a dynamic error (err:XC0092) if as a consequence of changing or removing
the namespace of an attribute the attribute's name is not unique on the
respective element.

• Namespace attributes: If the from option is present and its value is not the empty
string, for every namespace attribute in the input whose value is the same as the
value of the from option, in the output

◦ the namespace attribute's value is replaced with the value of the to option,
provided it is present and not the empty string;

◦ otherwise (the to option is not specified or has an empty string as its value)
the namespace attribute is absent.

51

2. The required steps

Note
The apply-to option is primarily intended to make it possible to
avoid renaming attributes when the from option specifies no
namespace, since many attributes are in no namespace.

Care should be taken when specifying no namespace with the to
option. Prefixed names in content, for example QNames and XPath
expressions, may end up with no appropriate namespace binding.

Document properties

All document properties are preserved.

2.23. p:pack
The p:pack step merges two document sequences in a pair-wise fashion.

<p:declare-step type="p:pack">
 <p:input port="source" content-types="text xml html" sequence="true"
primary="true"/>
 <p:input port="alternate" sequence="true" content-types="text xml html"/>
 <p:output port="result" sequence="true" content-types="application/xml"/>
 <p:option name="wrapper" required="true" as="xs:QName"/>
</p:declare-step>

The step takes each pair of documents, in order, one from the source port and one
from the alternate port, wraps them with a new element node whose QName is the
value specified in the wrapper option, and writes that element to the result port as
a document.

If the step reaches the end of one input sequence before the other, then it simply
wraps each of the remaining documents in the longer sequence.

52

2. The required steps

Note
In the common case, where the document element of a document in
the result sequence has two element children, any comments,
processing instructions, or white space text nodes that occur between
them may have come from either of the input documents; this step
does not attempt to distinguish which one.

Document properties

No document properties are preserved. The result documents do not have a base-
uri property.

2.24. p:rename
The p:rename step renames elements, attributes, or processing-instruction targets in
a document.

<p:declare-step type="p:rename">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="match" as="xs:string" select="'/*'"/>
 <p:option name="new-name" required="true" as="xs:QName"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if the pattern matches anything other than element, attribute or
processing instruction nodes.

Each element, attribute, or processing-instruction in the input matched by the
selection pattern specified in the match option is renamed in the output to the name
specified by the new-name option.

If the match option matches an attribute and if the element on which it occurs
already has an attribute whose expanded name is the same as the expanded name of

53

2. The required steps

the specified new-name, then the results is as if the current attribute named “new-
name” was deleted before renaming the matched attribute.

With respect to attributes named “xml:base”, the following semantics apply:
renaming an from “xml:base” to something else has no effect on the underlying base
URI of the element; however, if an attribute is renamed from something else to
“xml:base”, the base URI of the element must also be amended accordingly.

If the pattern matches processing instructions, then it is the processing instruction
target that is renamed. It is a dynamic error (err:XC0013) if the pattern matches a
processing instruction and the new name has a non-null namespace.

Document properties

All document properties are preserved.

2.25. p:replace
The p:replace step replaces matching nodes in its primary input with the top-level
node(s) of the replacement port's document.

<p:declare-step type="p:replace">
 <p:input port="source" primary="true" content-types="xml html"/>
 <p:input port="replacement" content-types="text xml html"/>
 <p:output port="result" content-types="text xml html"/>
 <p:option name="match" required="true" as="xs:string"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if that pattern matches an attribute or a namespace nodes.
Multiple matches are allowed, in which case multiple copies of the replacement
document will occur.

Every node in the primary input matching the specified pattern is replaced in the
output by the top-level node(s) of the replacement document. Only non-nested
matches are replaced. That is, once a node is replaced, its descendants cannot be
matched.

54

2. The required steps

If the document node is matched and port replacement contains a text document,
the entire document is replaced by the text node. What appears on port result is a
text document with the text node wrapped in a document node.

Document properties

If the resulting document contains exactly one text node, the content-type property
is changed to text/plain and the serialization property is removed, while all
other document properties are preserved. For other document types, all document
properties are preserved.

2.26. p:set-attributes
The p:set-attributes step sets attributes on matching elements.

<p:declare-step type="p:set-attributes">
 <p:input port="source" primary="true" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="match" as="xs:string" select="'/*'"/>
 <p:option name="attributes" required="true" as="map(xs:QName,
xs:anyAtomicType)"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if that pattern matches anything other than element nodes.

A new attribute is created for each entry in the map appearing on the attributes
option. The attribute name is taken from the entry's key while the attribute value is
taken from the string value of the entry's value.

If an attribute with the same name as one of the attributes to be created already
exists, the value specified on the attributes option is used. The result port of this
step produces a copy of the source port's document with the matching elements'
attributes modified.

The matching elements are specified by the selection pattern in the match option. All
matching elements are processed. If no elements match, the step will not change any
elements.

55

2. The required steps

If the attributes taken from the attributes use namespaces, prefixes, or prefixes
bound to different namespaces, the document produced on the result output port
will require namespace fixup.

If an attribute named xml:base is added or changed, the base URI of the element
must also be amended accordingly.

Document properties

All document properties are preserved.

2.27. p:set-properties
The p:set-properties step sets document properties on the source document.

<p:declare-step type="p:set-properties">
 <p:input port="source" content-types="any"/>
 <p:output port="result" content-types="any"/>
 <p:option name="properties" required="true" as="map(xs:QName,item()*)"/>
 <p:option name="merge" select="true()" as="xs:boolean"/>
</p:declare-step>

The document properties of the document on the source port are augmented with
the values specified in the properties option. The document produced on the
result port has the same representation but the adjusted property values.

If the merge option is true, then the supplied properties are added to the existing
properties, overwriting already existing values for a given key. If it is false, the
document’s properties are replaced by the new set.

It is a dynamic error (err:XD0070) if a value is assigned to the serialization
document property that cannot be converted into map(xs:QName, item()*)
according to the rules in section “QName handling” of [XProc 3.0].

It is a dynamic error (err:XC0069) if the properties map contains a key equal to the
string “content-type”.

If the properties map contains a key equal to the string “base-uri” the associated
value is taken as the new base URI of the resulting document. It is a dynamic

56

2. The required steps

error (err:XD0064) if the base URI is not both absolute and valid according to [RFC
3986].

Document properties

If merge is true, document properties not overridden by settings in the properties
map are preserved, otherwise the resulting document has only the content-type
property and the properties specified in the properties map. In particular, if merge
is false, the base-uri property will not be preserved. This means that the resulting
document will not have a base URI if the properties map does not contain a base-
uri entry.

2.28. p:sink
The p:sink step accepts a sequence of documents and discards them. It has no
output.

<p:declare-step type="p:sink">
 <p:input port="source" content-types="any" sequence="true"/>
</p:declare-step>

Document properties

Not applicable.

2.29. p:split-sequence
The p:split-sequence step accepts a sequence of documents and divides it into two
sequences.

57

2. The required steps

<p:declare-step type="p:split-sequence">
 <p:input port="source" content-types="any" sequence="true"/>
 <p:output port="matched" sequence="true" primary="true" content-
types="any"/>
 <p:output port="not-matched" sequence="true" content-types="any"/>
 <p:option name="initial-only" as="xs:boolean" select="false()"/>
 <p:option name="test" required="true" as="xs:string"/>
</p:declare-step>

The value of the test option must be an XPathExpression.

The XPath expression in the test option is applied to each document in the input
sequence. If the effective boolean value of the expression is true, the document is
copied to the matched port; otherwise it is copied to the not-matched port.

If the initial-only option is true, then when the first document that does not
satisfy the test expression is encountered, it and all the documents that follow it are
written to the not-matched port. In other words, it only writes the initial series of
matched documents (which may be empty) to the matched port. All other documents
are written to the not-matched port, irrespective of whether or not they match.

The XPath context for the test option changes over time. For each document that
appears on the source port, the expression is evaluated with that document as the
context document. The context position (position()) is the position of that
document within the sequence and the context size (last()) is the total number of
documents in the sequence. It is a dynamic error (err:XC0150) if evaluating the XPath
expression in option test on a context document results in an error.

Note
In principle, this component cannot stream because it must buffer all
of the input sequence in order to find the context size. In practice, if
the test expression does not use the last() function, the
implementation can stream and ignore the context size.

If the implementation supports passing PSVI annotations between steps, the
p:split-sequence step must preserve any annotations that appear in the input.

58

2. The required steps

Document properties

All document properties are preserved.

2.30. p:store
The p:store step stores (a possibly serialized version of) its input to a URI. It
outputs a reference to the location of the stored document on the result-uri port.
Aside from these side-effects, it behaves like a p:identity step, copying its input to
the result port.

<p:declare-step type="p:store">
 <p:input port="source" content-types="any"/>
 <p:output port="result" content-types="any" primary="true"/>
 <p:output port="result-uri" content-types="application/xml"/>
 <p:option name="href" required="true" as="xs:anyURI"/>
 <p:option name="serialization" as="map(xs:QName,item()*)?"/>
</p:declare-step>

The value of the href option must be an anyURI. If it is relative, it is made absolute
against the base URI of the element on which it is specified (p:with-option or
p:store in the case of a syntactic shortcut value).

The step attempts to store the document to the specified URI. If the URI scheme
“file:” is supported, the processor should try to create all non existing folders in
the URI’s path. It is a dynamic error (err:XC0050) if the URI scheme is not supported
or the step cannot store to the specified location.

The output of this step on the result-uri port is a document containing a single
c:result element whose content is the absolute URI of the document stored by the
step.

The serialization option is provided to control the serialization of content when it
is stored. If the document to be stored has a “serialization” property, the serialization
is controlled by the merger of the two maps where the entries in the “serialization”
property take precedence. Serialization is described in [XProc 3.0].

59

2. The required steps

Document properties

All document properties are preserved.

2.31. p:string-replace
The p:string-replace step matches nodes in the document provided on the source
port and replaces them with the string result of evaluating an XPath expression.

<p:declare-step type="p:string-replace">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="text xml html"/>
 <p:option name="match" required="true" as="xs:string"/>
 <p:option name="replace" required="true" as="xs:string"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern.

The value of the replace option must be an XPathExpression.

The matched nodes are specified with the selection pattern in the match option. For
each matching node, the XPath expression provided by the replace option is
evaluated with the matching node as the XPath context node. The string value of the
result is used in the output. Nodes that do not match are copied without change.

If the expression given in the match option matches an attribute, the string value of
the replace expression is used as the new value of the attribute in the output. If the
attribute is named “xml:base”, the base URI of the element must also be amended
accordingly.

If the document node is matched, the entire document is replaced by the string value
of the replace expression. What appears on port result is a text document with the
text node wrapped in a document node.

If the expression matches any other kind of node, the entire node (and not just its
contents) is replaced by the string value of the replace expression.

60

2. The required steps

Document properties

If the resulting document contains exactly one text node, the content-type property
is changed to text/plain and the serialization property is removed, while all
other document properties are preserved. For other document types, all document
properties are preserved.

2.32. p:text-count
The p:text-count step counts the number of lines in a text document and returns a
single XML document containing that number.

<p:declare-step type="p:text-count">
 <p:input port="source" primary="true" sequence="false" content-
types="text"/>
 <p:output port="result" primary="true" sequence="false" content-
types="application/xml"/>
</p:declare-step>

The p:text-count step counts the number of lines in the text document appearing
on its source port. It returns on its result port an XML document containing a
single c:result element whose contents is the string representing this count.

Lines are identified as described in XML, 2.11 End-of-Line Handling. For the purpose
of identifying lines, if the very last character in the text document is a newline
(
), that newline is ignored. (It is not a separator between that line and a
following line that contains no characters.)

Document properties

No document properties are preserved. The count document does not have a base-
uri property.

2.33. p:text-head
The p:text-head step returns lines from the beginning of a text document.

61

2. The required steps

https://www.w3.org/TR/xml/#sec-line-ends

<p:declare-step type="p:text-head">
 <p:input port="source" primary="true" sequence="false" content-
types="text"/>
 <p:output port="result" primary="true" sequence="false" content-
types="text"/>
 <p:option name="count" required="true" as="xs:integer"/>
</p:declare-step>

The p:text-head step returns on its result port lines from the text document that
appears on its source port:

• If the count option is positive, the p:text-head step returns the first count lines

• If the count option is zero, the p:text-head step returns all lines

• If the count option is negative, the p:text-head step returns all lines except the
first count lines

Lines are identified as described in XML, 2.11 End-of-Line Handling. All lines
returned by p:text-head are terminated with a single newline (
).

Document properties

All document properties are preserved.

2.34. p:text-join
The p:text-join step concatenates text documents.

<p:declare-step type="p:text-join">
 <p:input port="source" sequence="true" content-types="text"/>
 <p:output port="result" content-types="text"/>
 <p:option name="separator" as="xs:string?"/>
 <p:option name="prefix" as="xs:string?"/>
 <p:option name="suffix" as="xs:string?"/>
 <p:option name="override-content-type" as="xs:string?"/>
</p:declare-step>

The p:text-join step concatenates the text documents appearing on its source port
into a single document on its result port. The documents will be concatenated in
order of appearance.

62

2. The required steps

https://www.w3.org/TR/xml/#sec-line-ends

• When the separator option is specified, its value will be inserted in between
adjacent documents.

• When the prefix option is specified, the document appearing on the result
port will always start with its value (also when there are no documents on the
source port).

• When the suffix option is specified, the document appearing on the result
port will always end with its value (also when there are no documents on the
source port).

When the override-content-type option is specified, the document appearing on
the port result will have this media type as part of its document properties. It is a
dynamic error (err:XD0079) if a supplied content-type is not a valid media type of the
form “type/subtype+ext” or “type/subtype”. It is a dynamic error (err:XC0001) if
the value of option override-content-type is not a text media type.

Concatenating text documents does not require identifying individual lines in each
document, consequently no special end-of-line handling is performed.

Document properties

No document properties are preserved. The joined document has no base-uri
property.

2.35. p:text-replace
The p:text-replace step replaces all occurrences of substrings in a text document
that match a supplied regular expression with a given replacement string.

<p:declare-step type="p:text-replace">
 <p:input port="source" primary="true" sequence="false" content-
types="text"/>
 <p:output port="result" primary="true" sequence="false" content-
types="text"/>
 <p:option name="pattern" required="true" as="xs:string"/>
 <p:option name="replacement" required="true" as="xs:string"/>
 <p:option name="flags" as="xs:string?"/>
</p:declare-step>

63

2. The required steps

The p:text-replace step replaces all occurrences of substrings in the text document
appearing on its source port that match a supplied regular expression with a given
replacement string. The result is returned (as another text document) on its result
port.

This step is a convenience wrapper around the XPath fn:replace function to ease
text replacements in the document flow of a pipeline.

The pattern, replacement and flags options are specified the same as the
parameters with the same names of the fn:replace function. The pattern option
must be a regular expression as specified in [XPath and XQuery Functions and
Operators 3.1], section 7.61 “Regular Expression Syntax”. It is a dynamic
error (err:XC0147) if the specified value is not a valid XPath regular expression.

Replacing strings in text documents does not require identifying individual lines in
each document, consequently no special end-of-line handling is performed.

Document properties

All document properties are preserved.

2.36. p:text-sort
The p:text-sort step sorts lines in a text document.

<p:declare-step type="p:text-sort">
 <p:input port="source" primary="true" sequence="false" content-
types="text"/>
 <p:output port="result" primary="true" sequence="false" content-
types="text"/>
 <p:option name="sort-key" as="xs:string" select="'.'"/>
 <p:option name="order" as="xs:string" select="'ascending'"
values="('ascending', 'descending')"/>
 <p:option name="case-order" as="xs:string?" values="('upper-first',
'lower-first')"/>
 <p:option name="lang" as="xs:language?"/>
 <p:option name="collation" as="xs:string" select="'https://www.w3.org/
2005/xpath-functions/collation/codepoint'"/>
 <p:option name="stable" as="xs:boolean" select="true()"/>
</p:declare-step>

64

2. The required steps

https://www.w3.org/TR/xpath-functions-31/#func-replace
https://www.w3.org/TR/xpath-functions-31/#func-replace

The p:text-sort step sorts the lines in the text document appearing on its source
port and returns the result as another text document on its result port. The sort key
is obtained by applying the XPath expression in sort-key to each line in turn.

• The sort-key is used to obtain a sort key for each of the lines in the document
appearing on source. The context item is the line as an instance of xs:string,
the context position is the number of the line in the document on port
source, the context size is the number of lines in this document. It is a
dynamic error (err:XC0098) if a dynamic XPath error occurred while applying
sort-key to a line. It is a dynamic error (err:XC0099) if the result of applying
sort-key to a given line results in a sequence with more than one item.

• The order option defines whether the lines are processed in ascending or
descending order. Its value must be one of ascending or descending. The
default is ascending.

• The case-order option defines whether upper-case letters are to be collated
before or after lower-case letters. Its value must be one of upper-first or
lower-first. The default is language-dependent.

• The lang option defines the language whose collating conventions are to be
used. The default depends on the processing environment. Its value must be a
valid language code (e.g. en-EN).

• The collation option identifies how strings are to be compared with each other.
Its value must be a valid collation URI. The only collation XProc processors must
support is the Unicode Codepoint Collation http://www.w3.org/2005/xpath-
functions/collation/codepoint. This is also its default. Support for other
collations is implementation-defined.

• If the stable option is set to false this indicates that there is no requirement to
retain the original order of items that have equal values for all the sort keys.

Lines are identified as described in XML, 2.11 End-of-Line Handling. For the purpose
of identifying lines, if the very last character in the text document is a newline
(
), that newline is ignored. (It is not a separator between that line and a
following line that contains no characters.) All lines returned by p:text-sort are
terminated with a single newline (
).

65

2. The required steps

https://www.w3.org/2005/xpath-functions/collation/codepoint/
https://www.w3.org/2005/xpath-functions/collation/codepoint/
https://www.w3.org/TR/xml/#sec-line-ends

The sort process performed by this step is the same as described in The xsl:sort
Element. Options lang and case-order are only taken into consideration if no value
is selected for option collation.

Document properties

All document properties are preserved.

2.37. p:text-tail
The p:text-tail step returns lines from the end of a text document.

<p:declare-step type="p:text-tail">
 <p:input port="source" primary="true" sequence="false" content-
types="text"/>
 <p:output port="result" primary="true" sequence="false" content-
types="text"/>
 <p:option name="count" required="true" as="xs:integer"/>
</p:declare-step>

The p:text-tail step returns on its result port lines from the text document that
appears on its source port:

• If the count option is positive, the p:text-tail step returns the last count lines

• If the count option is zero, the p:text-tail step returns all lines

• If the count option is negative, the p:text-tail step returns all lines except the
last count lines

Lines are identified as described in XML, 2.11 End-of-Line Handling. All lines
returned by p:text-tail are terminated with a single newline (
).

Document properties

All document properties are preserved.

66

2. The required steps

https://www.w3.org/TR/xslt-30/#xsl-sort
https://www.w3.org/TR/xslt-30/#xsl-sort
https://www.w3.org/TR/xml/#sec-line-ends

2.38. p:unarchive
The p:unarchive step outputs on its result port specific entries in an archive (for
instance from a zip file).

<p:declare-step type="p:unarchive">
 <p:input port="source" primary="true" content-types="any"
sequence="false"/>
 <p:output port="result" primary="true" content-types="any"
sequence="true"/>
 <p:option name="include-filter" as="xs:string*"/>
 <p:option name="exclude-filter" as="xs:string*"/>
 <p:option name="format" as="xs:QName?"/>
 <p:option name="parameters" as="map(xs:QName, item()*)?"/>
 <p:option name="relative-to" as="xs:anyURI?"/>
 <p:option name="override-content-types" as="array(array(xs:string))?"/>
</p:declare-step>

The meaning and interpretation of the p:unarchive step's options is as follows:

• The format of the archive is determined as follows:

◦ If the format option is specified, this determines the format of the archive.
Implementations must support the [ZIP] format, specified with the value
zip. It is implementation-defined what other formats are supported.

◦ If no format option is specified or if its value is the empty sequence, the
archive's format will be determined by the step, using the content-type
document-property of the document on the source port and/or by
inspecting its contents. It is implementation-defined how the step determines
the archive's format. Implementations should recognize archives in [ZIP]
format.

◦ It is a dynamic error (err:XC0085) if the format of the archive does not match
the specified format, cannot be understood, determined and/or processed.

• The parameters option can be used to supply parameters to control the
unarchiving. The semantics of the keys and the allowed values for these keys are
implementation-defined. It is a dynamic error (err:XC0079) if the map parameters
contains an entry whose key is defined by the implementation and whose value
is not valid for that key.

67

2. The required steps

• If present, the value of the include-filter or exclude-filter option must be
a sequence of strings, each one representing a regular expressions as specified in
[XPath and XQuery Functions and Operators 3.1], section 7.61 “Regular
Expression Syntax”. It is a dynamic error (err:XC0147) if a specified value is
not a valid XPath regular expression.

If neither the include-filter option nor the exclude-filter option is
specified, the p:unarchive step outputs on its result port all entries in the
archive.

If the include-filter option or the exclude-filter option is specified, the
p:archive step outputs on the result port the entries from the archive that
conform to the following rules:

◦ If any include-filter pattern matches an archive entry's name, the entry
is included in the output.

◦ If any exclude-filter pattern matches an archive entry's name, the entry
is excluded in the output.

◦ If both options are provided, the include filter is processed first, then the
exclude filter.

◦ Names of entries in archives are always relative names. For instance, the
name of a file called xyz.xml in a specs subdirectory in an archive is called
in full specs/xyz.xml (and not /specs/xyz.xml).

As a result: an item is included if it matches (at least) one of the include-filter
values and none of the exclude-filter values.

The regular expressions specified in the include-filter and exclude-filter
options will be matched against the path of the entry in the archive. The
matching is done unanchored: it is a match if the regular expression matches
part of the entry's path. Informally: matching behaves like applying the XPath
matches#2 function, like in matches($path-in-archive, $regular-
expression).

68

2. The required steps

Note
Depending on how archives are constructed, the path of an entry
in an archive can be with or without a leading slash. Usually it
will be without. For archives constructed by p:archive no
leading slash will be present.

• The relative-to option, when present, is used in creating the base URI of the
unarchived documents. If the option is relative, it is made absolute against the
base URI of the element on which it is specified (p:with-option or the step in
case of a syntactic shortcut value).

• The override-content-types option can be used to partially override the
content-type determination mechanism, as described in Section 2.4.1,
“Overriding content types”.

The base URI of an unarchived document appearing on the result port is:

• If the relative-to option is present: Function p:urify() is called with the
value of this option as second parameter ($basedir) and with the relative path
of this document as it was in the archive as first parameter

• If the relative-to option is not present: Function p:urify()is called with the
value of the base URI of the archive appended with a “/” as second parameter
($baseDir) and the relative path of this document as it was in the archive as first
parameter

It is a dynamic error (err:XC0120) if the relative-to option is not present and the
document on the source port does not have a base URI. It is a dynamic
error (err:XD0064) if the option is not a valid URI according to [RFC 3986].

For instance, the base URI of an unarchived file called xyz.xml that resided in the
specs subdirectory in an archive with base URI file:///a/b/c.zip will become:

• With the relative-to option set to file:///x/y/z: file:///x/y/z/specs/
xyz.xml

69

2. The required steps

• Without a relative-to option set: file:///a/b/c.zip/specs/xyz.xml

Document properties

No document properties are preserved. The base-uri property of each unarchived
document is reflective of the base URI of the document.

2.39. p:uncompress
The p:uncompress step expects on its source port a compressed document. It
outputs an uncompressed version of this on its result port.

<p:declare-step type="p:uncompress">
 <p:input port="source" primary="true" content-types="any"
sequence="false"/>
 <p:output port="result" primary="true" content-types="any"
sequence="false"/>
 <p:option name="format" as="xs:QName?"/>
 <p:option name="parameters" as="map(xs:QName,item()*)?"/>
 <p:option name="content-type" as="xs:string" select="'application/octet-
stream'"/>
</p:declare-step>

The compression format of the document appearing on the source port is
determined as follows:

• If the format option is specified, this determines the compression format.
Implementations must support the [GZIP] format, specified with the value gzip.
It is implementation-defined what other formats are supported. It is a dynamic
error (err:XC0202) if the compression format cannot be understood, determined
and/or processed.

• If no format option is specified or its value is the empty sequence, the
compression format will be determined by the step, using the content-type
document-property of the document on the source port and/or by inspecting its
contents. It is implementation-defined how the step determines the compression
format. Implementations should recognize archives in [GZIP] format.

70

2. The required steps

The parameters option can be used to supply parameters to control the
uncompression. The semantics of the keys and the allowed values for these keys are
implementation-defined. It is a dynamic error (err:XC0079) if the map parameters
contains an entry whose key is defined by the implementation and whose value is
not valid for that key.

Identification of the uncompressed document's content-type is done as follows:

1. If the content-type option is specified, the uncompressed document must be
interpreted according to that content-type. It is a dynamic error (err:XD0079) if a
supplied content-type is not a valid media type of the form “type/
subtype+ext” or “type/subtype”. It is a dynamic error (err:XC0201) if the
p:uncompress step cannot perform the requested content-type cast.

2. In the absence of an explicit type, the content will be interpreted as content type
application/octet-stream.

Document properties

All document properties are preserved, except for the content-type property which
is updated accordingly.

2.40. p:unwrap
The p:unwrap step replaces matched elements with their children.

<p:declare-step type="p:unwrap">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="text xml html"/>
 <p:option name="match" as="xs:string" select="'/*'"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if that pattern matches anything other than the document node or
element nodes.

71

2. The required steps

Every element in the source document that matches the specified match pattern is
replaced by its children, effectively “unwrapping” the children from their parent.
Non-element nodes and unmatched elements are passed through unchanged.

Note
The matching applies to the entire document, not just the “top-most”
matches. A pattern of the form h:div will replace all h:div elements,
not just the top-most ones.

This step produces a single document. Special cases:

• If the document element is unwrapped, the result might not be well-formed
XML.

For instance unwrapping the root element of <!-- COMMENT --><root-
element/> will result in a document node with a single comment node child,
which is not well-formed.

• If a document consisting of only an empty root element is unwrapped, the result
will be a document node without children. The result document’s content type
will not change.

• If a document consisting of a root element containing only text is unwrapped,
the result will be a document node with a single text node child. The result
document’s content type will become “text/plain”.

As specified in the core language specification: if the content type changes, the
serialization document property, if present, will be removed.

Document properties

If the resulting document contains exactly one text node, the content-type property
is changed to text/plain and the serialization property is removed, while all
other document properties are preserved. In all other cases, all document properties
are preserved.

72

2. The required steps

2.41. p:uuid
The p:uuid step generates a [UUID] and injects it into the source document.

<p:declare-step type="p:uuid">
 <p:input port="source" primary="true" content-types="xml html"/>
 <p:output port="result" content-types="text xml html"/>
 <p:option name="match" as="xs:string" select="'/*'"/>
 <p:option name="version" as="xs:integer?"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. The value of the
version option must be an integer.

If the version is specified, that version of UUID must be computed. It is a dynamic
error (err:XC0060) if the processor does not support the specified version of the
UUID algorithm. If the version is not specified, the version of UUID computed is
implementation-defined.

Implementations must support version 4 UUIDs. Support for other versions of
UUID, and the mechanism by which the necessary inputs are made available for
computing other versions, is implementation-defined.

The matched nodes are specified with the selection pattern in the match option. For
each matching node, the generated UUID is used in the output (if more than one
node matches, the same UUID is used in each match). Nodes that do not match are
copied without change.

If the expression given in the match option matches an attribute, the UUID is used as
the new value of the attribute in the output. If the attribute is named “xml:base”, the
base URI of the element must also be amended accordingly.

If the document node is matched, the entire document is replaced by a text node with
the UUID. What appears on port result is a text document with the text node
wrapped in a document node.

If the expression matches any other kind of node, the entire node (and not just its
contents) is replaced by the UUID.

73

2. The required steps

Document properties

If the resulting document contains exactly one text node, the content-type property
is changed to text/plain and the serialization property is removed, while all
other document properties are preserved. For other document types, all document
properties are preserved.

2.42. p:wrap-sequence
The p:wrap-sequence step accepts a sequence of documents and produces either a
single document or a new sequence of documents.

<p:declare-step type="p:wrap-sequence">
 <p:input port="source" content-types="text xml html" sequence="true"/>
 <p:output port="result" sequence="true" content-types="application/xml"/>
 <p:option name="wrapper" required="true" as="xs:QName"/>
 <p:option name="group-adjacent" as="xs:string?"/>
</p:declare-step>

The value of the group-adjacent option must be an XPathExpression.

In its simplest form, p:wrap-sequence takes a sequence of documents and produces
a single, new document by placing each document in the source sequence inside a
new document element as sequential siblings. The name of the document element is
the value specified in the wrapper option.

The group-adjacent option can be used to group adjacent documents. The XPath
context for the group-adjacent option changes over time. For each document that
appears on the source port, the expression is evaluated with that document as the
context document. The context position (position()) is the position of that
document within the sequence and the context size (last()) is the total number of
documents in the sequence. Whenever two or more sequentially adjacent documents
have the same “group adjacent” value, they are wrapped together in a single
wrapper element. Two “group adjacent” values are the same if the standard XPath
function deep-equal() returns true for them.

74

2. The required steps

Document properties

No document properties are preserved. The document produced has no base-uri
property.

2.43. p:wrap
The p:wrap step wraps matching nodes in the source document with a new parent
element.

<p:declare-step type="p:wrap">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="application/xml"/>
 <p:option name="wrapper" required="true" as="xs:QName"/>
 <p:option name="match" required="true" as="xs:string"/>
 <p:option name="group-adjacent" as="xs:string?"/>
</p:declare-step>

The value of the match option must be an XSLTSelectionPattern. It is a dynamic
error (err:XC0023) if the pattern matches anything other than document, element,
text, processing instruction, and comment nodes.

The value of the group-adjacent option must be an XPathExpression.

If the node matched is the document node (match="/"), the result is a new document
where the document element is a new element node whose QName is the value
specified in the wrapper option. That new element contains copies of all of the
children of the original document node.

When the selection pattern does not match the document node, every node that
matches the specified match pattern is replaced with a new element node whose
QName is the value specified in the wrapper option. The content of that new element
is a copy of the original, matching node. The p:wrap step performs a "deep"
wrapping, the children of the matching node and their descendants are processed
and wrappers are added to all matching nodes.

The group-adjacent option can be used to group adjacent matching nodes in a
single wrapper element. The specified XPath expression is evaluated for each
matching node with that node as the XPath context node. Whenever two or more
adjacent matching nodes have the same “group adjacent” value, they are wrapped

75

2. The required steps

together in a single wrapper element. Two “group adjacent” values are the same if
the standard XPath function deep-equal() returns true for them.

Two matching nodes are considered adjacent if and only if they are siblings and
either there are no nodes between them or all intervening, non-matching nodes are
whitespace text, comment, or processing instruction nodes.

Document properties

All document properties are preserved.

2.44. p:www-form-urldecode
The p:www-form-urldecode step decodes a x-www-form-urlencoded string into a
JSON representation.

<p:declare-step type="p:www-form-urldecode">
 <p:output port="result" content-types="application/json"/>
 <p:option name="value" required="true" as="xs:string"/>
</p:declare-step>

A JSON object of the form “map(xs:string, xs:string+)” will appear on result
port. The value option is interpreted as a string of parameter values encoded using
the x-www-form-urlencoded algorithm. Each name/value pair is represented in the
JSON object as key/value entry.

It is a dynamic error (err:XC0037) if the value provided is not a properly x-www-
form-urlencoded value.

If any parameter name occurs more than once in the encoded string, a sequence will
be associated with the respective key. The order in the sequence retains the order of
name/value pairs in the encoded string.

Document properties

The resulting JSON document has no properties apart from content-type. In
particular, it has no base-uri.

76

2. The required steps

2.45. p:www-form-urlencode
The p:www-form-urlencode step encodes a set of parameter values as a x-www-
form-urlencoded string.

<p:declare-step type="p:www-form-urlencode">
 <p:output port="result" content-types="text/plain"/>
 <p:option name="parameters" required="true"
as="map(xs:string,xs:anyAtomicType+)"/>
</p:declare-step>

The map entries of parameters option are encoded as a single x-www-form-
urlencoded string of name/value pairs. This string is returned on the result port as
a text document.

If more than one value is associated with a given key in parameters option, a name/
value pair is created for each value.

Document properties

The resulting text document has no properties apart from content-type. In
particular, it has no base-uri.

2.46. p:xinclude
The p:xinclude step applies [XInclude] processing to the source document.

<p:declare-step type="p:xinclude">
 <p:input port="source" content-types="xml html"/>
 <p:output port="result" content-types="xml html"/>
 <p:option name="fixup-xml-base" as="xs:boolean" select="false()"/>
 <p:option name="fixup-xml-lang" as="xs:boolean" select="false()"/>
</p:declare-step>

The value of the fixup-xml-base option must be a boolean. If it is true, base URI
fixup will be performed as per [XInclude].

The value of the fixup-xml-lang option must be a boolean. If it is true, language
fixup will be performed as per [XInclude].

77

2. The required steps

The included documents are located with the base URI of the input document and
are not provided as input to the step.

It is a dynamic error (err:XC0029) if an XInclude error occurs during processing.

Document properties

All document properties are preserved.

2.47. p:xquery
The p:xquery step applies an XQuery query to the sequence of documents provided
on the source port.

<p:declare-step type="p:xquery">
 <p:input port="source" content-types="any" sequence="true"
primary="true"/>
 <p:input port="query" content-types="text xml"/>
 <p:output port="result" sequence="true" content-types="any"/>
 <p:option name="parameters" as="map(xs:QName,item()*)?"/>
 <p:option name="version" as="xs:string?"/>
</p:declare-step>

If a sequence of documents is provided on the source port, the first document is
used as the initial context item. The whole sequence is also the default collection. If
no documents are provided on the source port, the initial context item is undefined
and the default collection is empty.

The query port must receive a single document which is either an XML document or
a text document. A text document must be treated as the query. For an XML
document the following rules apply:

• If the document root element is c:query, the text descendants of this element are
considered the query.

<c:query>
 string
</c:query>

78

2. The required steps

• If the document root element is in the XQueryX namespace, the document is
treated as an XQueryX-encoded query. Support for XQueryX is implementation-
defined.

• Otherwise the serialization of the document must be treated as the query. The
document's serialization property (if present) is used.

If the step specifies a version, then that version of XQuery must be used to process
the transformation. It is a dynamic error (err:XC0009) if the specified XQuery version
is not available. If the step does not specify a version, the implementation may use
any version it has available and may use any means to determine what version to
use, including, but not limited to, examining the version of the query.It is
implementation defined which XQuery version(s) is/are supported.

The name/value pairs in option parameters are used to set the query’s external
variables.

It is a dynamic error (err:XC0101) if a document appearing on port source cannot be
represented in the XDM version associated with the chosen XQuery version, e.g.
when a JSON document contains a map and XDM 3.0 is used. It is a dynamic
error (err:XC0102) if any key in option parameters is associated to a value that
cannot be represented in the XDM version associated with the chosen XQuery
version, e.g. with a map, an array, or a function when XDM 3.0 is used.

It is a dynamic error (err:XC0103) if any error occurs during XQuery’s static analysis
phase. It is a dynamic error (err:XC0104) if any error occurs during XQuery’s
dynamic evaluation phase.

The output of this step may include PSVI annotations.

The static context of the XQuery processor is augmented in the following way:

Statically known default collection type
document()*

Statically known namespaces:
Unchanged from the implementation defaults. No namespace declarations in the
XProc pipeline are automatically exposed in the static context.

The dynamic context of the XQuery processor is augmented in the following way:

79

2. The required steps

Context item
The first document that appears on the source port.

Context position
1

Context size
1

Variable values
Any parameters passed in the parameters option augment any implementation-
defined variable bindings known to the XQuery processor.

Function implementations
The function implementations provided by the XQuery processor.

Current dateTime
The point in time returned as the current dateTime is implementation-defined.

Implicit timezone
The implicit timezone is implementation-defined.

Available documents
The set of available documents (those that may be retrieved with a URI) is
implementation-dependent.

Available collections
The set of available collections is implementation-dependent.

Default collection
The sequence of documents provided on the source port.

2.47.1. Example

The following pipeline applies XInclude processing and schema validation before
using XQuery:

80

2. The required steps

Example 1. A Sample Pipeline Document

<p:declare-step xmlns:p="http://www.w3.org/ns/xproc"
 version="3.0">
<p:input port="source"/>
<p:output port="result"/>

<p:xinclude/>

<p:validate-with-xml-schema name="validate">
 <p:with-input port="schema"
 href="http://example.com/path/to/schema.xsd"/>
</p:validate-with-xml-schema>

<p:xquery>
 <p:with-input port="query" href="countp.xq"/>
</p:xquery>

</p:declare-step>

Where countp.xq might contain:

<count>{count(.//p)}</count>

2.47.2. Document properties

No document properties are preserved. The base-uri property of each document
will reflect the base URI specified by the query. If the query does not establish a base
URI, the document will not have one.

2.48. p:xslt
The p:xslt step invokes an XSLT stylesheet.

81

2. The required steps

<p:declare-step type="p:xslt">
 <p:input port="source" content-types="any" sequence="true"
primary="true"/>
 <p:input port="stylesheet" content-types="xml"/>
 <p:output port="result" primary="true" sequence="true" content-
types="any"/>
 <p:output port="secondary" sequence="true" content-types="any"/>
 <p:option name="parameters" as="map(xs:QName,item()*)?"/>
 <p:option name="static-parameters" as="map(xs:QName,item()*)?"/>
 <p:option name="global-context-item" as="item()?"/>
 <p:option name="populate-default-collection" as="xs:boolean?"
select="true()"/>
 <p:option name="initial-mode" as="xs:QName?"/>
 <p:option name="template-name" as="xs:QName?"/>
 <p:option name="output-base-uri" as="xs:anyURI?"/>
 <p:option name="version" as="xs:string?"/>
</p:declare-step>

If output-base-uri is relative, it is made absolute against the base URI of the
element on which it is specified (p:with-option or p:xslt in the case of a syntactic
shortcut value).

If the step specifies a version, then that version of XSLT must be used to process the
transformation. It is a dynamic error (err:XC0038) if the specified xslt version is not
available. If the step does not specify a version, the implementation may use any
version it has available and may use any means to determine what version to use,
including, but not limited to, examining the version of the stylesheet. It is
implementation-defined which XSLT version(s) is/are supported.

The XSLT stylesheet provided on the stylesheet port is invoked. It is a dynamic
error (err:XC0093) if a static error occurs during the static analysis of the XSLT
stylesheet. Any parameters passed in the parameters option are used to define top-
level stylesheet parameters.

Parameters passed in the static-parameters option are passed as static parameters
to the XSLT invocation. Whether static parameters are supported is implementation-
defined and depends on the XSLT version (which must be 3.0 or higher). If static
parameters are not supported the option is ignored.

It is a dynamic error (err:XC0095) if an error occurred during the transformation. It is
a dynamic error (err:XC0096) if the transformation is terminated by XSLT message
termination. How XSLT message termination errors are reported to the XProc
processor is implementation-dependent. Implementations should raise an error using

82

2. The required steps

the error code from the XSLT step (for example, the error-code specified on the
xsl:message or Q{http://www.w3.org/2005/xqt-errors}XTTM9000 if no code is
provided).

If XSLT 2.0 or XSLT 3.0 is used, the outputs of this step may include PSVI
annotations.

The interpretation of the input and output ports as well as for the other options
depends on the selected XSLT version.

2.48.1. Invoking an XSLT 3.0 stylesheet

The value of global-context-item is used as global context item for the stylesheet
invocation. If no value is supplied, the following applies:

• If there is a single document on the source port, this document will become the
value of the global-context-item option.

• If there are none or multiple documents on the source port, the global context
item is absent.

The populate-default-collection option is used to control whether all the
documents appearing on source port form the default collection for the XSLT
transformation.

If no value is supplied for template-name option an “Apply-template invocation” is
performed. The documents that appear on source are taken to be the initial match
selection. if populate-default-collection is true, they are also the default
collection. If a value is supplied for the initial-mode option, this value is used as
the initial-mode for the invocation. It is a dynamic error (err:XC0008) if the stylesheet
does not support a given mode. If no value is supplied, nothing is supplied to the
invocation, so the default behaviour defined for XSLT 3.0 could be applied.

If a value is supplied for option template-name a “Call template invocation” is
performed. The documents on port source are taken as the default collection in this
case. Option initial-mode is ignored. It is a dynamic error (err:XC0056) if the
stylesheet does not provide a given template.

83

2. The required steps

Independent of the way the stylesheet is invoked, the principal result(s) will appear
on output port result while secondary result(s) will appear on output port
secondary. The order in which result documents appear on the secondary port is
implementation dependent. Whether the raw results are delivered or a result tree is
constructed, depends on the (explicit or implicit) setting for attribute build-tree of
in the output-definition for the respective result. If a result tree is constructed, the
result will be a text document if it is a single text node wrapped into a document
node. Otherwise it will be either an XML document or an HTML document
depending on the attribute method on the output-definition for the respective result.
If no result tree is constructed, the stylesheet invocation may additionally deliver a
sequence of atomic values, maps, or arrays. For each item in this sequence a JSON
document will be constructed and appear on the steps output port.

Option output-base-uri sets the base output URI per XSLT 3.0 specification. If a
final result tree is constructed, this URI is used to resolve a relative URI reference. If
no value is supplied for output-base-uri, the base URI of the first document in the
source port's sequence is used. If no document is supplied on port source the base
URI of the document on port stylesheet is used. It is a dynamic error (err:XC0121)
if a document appearing on the secondary port has a base URI that is not both
absolute and valid according to [RFC 3986].

Note
If no result tree is constructed for one of secondary results, a
sequence of documents sharing the same value for attribute href
may appear on output port result.

2.48.2. Invoking an XSLT 2.0 stylesheet

If a sequence of documents is provided on the source port, the first document is
used as the initial context node. The whole sequence is also the default collection. If
no documents are provided on the source port, the initial context node is undefined
and the default collection is empty. It is a dynamic error (err:XC0094) if any
document supplied on the source port is not an XML document, an HTML
documents, or a Text document if XSLT 2.0 is used.

84

2. The required steps

The populate-default-collection option is used to control whether all the
documents appearing on source port form the default collection for the XSLT
transformation.

The value of option global-context-item is ignored if a stylesheet is invoked as
per XSLT 2.0. The invocation of the transformation is controlled by the initial-mode
and template-name options that set the initial mode and/or named template in the
XSLT transformation where processing begins. It is a dynamic error (err:XC0007) if
any key in parameters is associated to a value which is not an instance of the
XQuery 1.0 and XPath 2.0 Data Model, e.g. with a map, an array, or a function. It is a
dynamic error (err:XC0008) if the specified initial mode cannot be applied to the
specified stylesheet. It is a dynamic error (err:XC0056) if the specified template name
cannot be applied to the specified stylesheet.

The primary result document of the transformation, if there is one, appears on the
result port. At most one document can appear on the result port. All other result
documents appear on the secondary port. The order in which result documents
appear on the secondary port is implementation dependent.

The output-base-uri option sets the context's output base URI per the XSLT 2.0
specification, otherwise the base URI of the result document is the base URI of the
first document in the source port's sequence. If no document is supplied on port
source the base URI of the document on port stylesheet is used. It is a dynamic
error (err:XC0121) if a document appearing on the secondary port has a base URI
that is not both absolute and valid according to [RFC 3986].

2.48.3. Invoking an XSLT 1.0 stylesheet

The document provided for source is used the transformations source tree. It is a
dynamic error (err:XC0039) if the source port does not contain exactly one XML
document or one HTML document if XSLT 1.0 is used. The values supplied for
options global-context-item, initial-mode, and template-name are ignored. If
XSLT 1.0 is used, an empty sequence of documents must appear on the secondary
port. An XSLT 1.0 step should use the value of the output-base-uri as the base URI
of its output, if the option is specified.

85

2. The required steps

The key/value pairs supplied in parameters are used to set top-level parameters in
the stylesheet. If the value is an atomic value or a node, its string value is supplied to
the stylesheet. It is a dynamic error (err:XC0105) if an XSLT 1.0 stylesheet is invoked
and option parameters contains a value that is not an atomic value or a node.

Document properties

No document properties are preserved. The base-uri property of each document
will reflect the base URI specified by the tranformation. If the transformation does
not establish a base URI, the document will not have one.

3. Step Errors
Several of the steps in the standard step library can generate dynamic errors.

A [Definition: A dynamic error is one which occurs while a pipeline is being
evaluated.] Examples of dynamic errors include references to URIs that cannot be
resolved, steps which fail, and pipelines that exhaust the capacity of an
implementation (such as memory or disk space).

If a step fails due to a dynamic error, failure propagates upwards until either a p:try
is encountered or the entire pipeline fails. In other words, outside of a p:try, step
failure causes the entire pipeline to fail.

Dynamic errors raised by steps are divided into two categories: dynamic errors and
step errors. The distinction is largely that “step errors” tend to be related to a
particular step or small group of steps (e.g., validation error) whereas the “dynamic
errors” apply to many more steps (e.g., URI not available). There is also precedent for
some of the error codes dating back to XProc 1.0.

Dynamic Errors

err:XD0011
It is a dynamic error if the resource referenced by the href option does not exist,
cannot be accessed or is not a file.

86

3. Step Errors

See: Handling of ZIP archives, p:load

err:XD0023
It is a dynamic error if a DTD validation is performed and either the document is
not valid or no DTD is found.

See: Loading XML data

err:XD0043
It is a dynamic error if the dtd-validate parameter is true and the processor does
not support DTD validation.

See: Loading XML data

err:XD0049
It is a dynamic error if the text value is not a well-formed XML document

See: Casting from a text media type, Loading XML data

err:XD0057
It is a dynamic error if the text document does not conform to the JSON
grammar, unless the parameter liberal is true and the processor chooses to accept
the deviation.

See: Casting from a text media type, Loading JSON data

err:XD0058
It is a dynamic error if the parameter duplicates is reject and the text document
contains a JSON object with duplicate keys.

See: Casting from a text media type, Loading JSON data

err:XD0059
It is a dynamic error if the parameter map contains an entry whose key is
defined in the specification of fn:parse-json and whose value is not valid for that
key, or if it contains an entry with the key fallback when the parameter escape
with true() is also present.

See: Casting from a text media type, Loading JSON data

err:XD0060
It is a dynamic error if the text document can not be converted into the XPath
data model

87

3. Step Errors

See: Casting from a text media type, Loading text data

err:XD0062
It is a dynamic error if the content-type is specified and the document-properties
has a “content-type” that is not the same.

See: p:load

err:XD0064
It is a dynamic error if the base URI is not both absolute and valid according to .

See: p:archive, p:archive-manifest, p:load, p:make-absolute-uris, p:set-properties,
p:unarchive

err:XD0070
It is a dynamic error if a value is assigned to the serialization document property
that cannot be converted into map(xs:QName, item()*) according to the rules in
section “QName handling” of .

See: p:set-properties

err:XD0078
It is a dynamic error if the loaded document cannot be represented as an HTML
document in the XPath data model.

See: Loading HTML data

err:XD0079
It is a dynamic error if a supplied content-type is not a valid media type of the
form “type/subtype+ext” or “type/subtype”.

See: Overriding content types, p:cast-content-type, p:http-request, p:http-
request, p:load, p:text-join, p:uncompress

Step Errors

err:XC0001
It is a dynamic error if the value of option override-content-type is not a text
media type.

See: p:text-join

88

3. Step Errors

err:XC0003
It is a dynamic error if a “username” or a “password” key is present without
specifying a value for the “auth-method” key, if the requested auth-method isn't
supported, or the authentication challenge contains an authentication method
that isn't supported.

See: p:http-request

err:XC0007
It is a dynamic error if any key in parameters is associated to a value which is
not an instance of the XQuery 1.0 and XPath 2.0 Data Model, e.g. with a map, an
array, or a function.

See: Invoking an XSLT 2.0 stylesheet

err:XC0008
It is a dynamic error if the stylesheet does not support a given mode.

See: Invoking an XSLT 3.0 stylesheet, Invoking an XSLT 2.0 stylesheet

err:XC0009
It is a dynamic error if the specified XQuery version is not available.

See: p:xquery

err:XC0013
It is a dynamic error if the pattern matches a processing instruction and the new
name has a non-null namespace.

See: p:rename

err:XC0014
It is a dynamic error if the XML namespace (http://www.w3.org/XML/1998/
namespace) or the XMLNS namespace (http://www.w3.org/2000/xmlns/) is
the value of either the from option or the to option.

See: p:namespace-rename

err:XC0019
It is a dynamic error if the documents are not equal according to the specified
comparison method, and the value of the fail-if-not-equal option is true.

See: p:compare

89

3. Step Errors

err:XC0023
It is a dynamic error if the selection pattern matches a node which is not an
element.

See: p:add-attribute, p:delete, p:insert, p:label-elements, p:make-absolute-uris,
p:rename, p:replace, p:set-attributes, p:unwrap, p:wrap

err:XC0024
It is a dynamic error if the selection pattern matches a document node and the
value of the position is “before” or “after”.

See: p:insert

err:XC0025
It is a dynamic error if the selection pattern matches anything other than an
element or a document node and the value of the position option is “first-child”
or “last-child”.

See: p:insert

err:XC0029
It is a dynamic error if an XInclude error occurs during processing.

See: p:xinclude

err:XC0030
It is a dynamic error if the response body cannot be interpreted as requested (e.g.
application/json to override application/xml content).

See: p:http-request

err:XC0036
It is a dynamic error if the requested hash algorithm is not one that the processor
understands or if the value or parameters are not appropriate for that algorithm.

See: p:hash

err:XC0037
It is a dynamic error if the value provided is not a properly x-www-form-
urlencoded value.

See: p:www-form-urldecode

90

3. Step Errors

err:XC0038
It is a dynamic error if the specified xslt version is not available.

See: p:xslt

err:XC0039
It is a dynamic error if the source port does not contain exactly one XML
document or one HTML document if XSLT 1.0 is used.

See: Invoking an XSLT 1.0 stylesheet

err:XC0050
It is a dynamic error if the URI scheme is not supported or the step cannot store
to the specified location.

See: p:store

err:XC0056
It is a dynamic error if the stylesheet does not provide a given template.

See: Invoking an XSLT 3.0 stylesheet, Invoking an XSLT 2.0 stylesheet

err:XC0058
It is a dynamic error if the all and relative options are both true.

See: p:add-xml-base

err:XC0059
It is a dynamic error if the QName value in the attribute-name option uses the
prefix “xmlns” or any other prefix that resolves to the namespace name http://
www.w3.org/2000/xmlns/.

See: p:add-attribute

err:XC0060
It is a dynamic error if the processor does not support the specified version of
the UUID algorithm.

See: p:uuid

err:XC0062
It is a dynamic error if the match option matches a namespace node.

91

3. Step Errors

See: p:delete

err:XC0069
It is a dynamic error if the properties map contains a key equal to the string
“content-type”.

See: p:set-properties

err:XC0071
It is a dynamic error if the p:cast-content-type step cannot perform the requested
cast.

See: p:cast-content-type

err:XC0072
It is a dynamic error if the c:data contains content is not a valid base64 string.

See: Casting from an XML media type

err:XC0073
It is a dynamic error if the c:data element does not have a content-type attribute.

See: Casting from an XML media type

err:XC0074
It is a dynamic error if the content-type is supplied and is not the same as the
content-type specified on the c:data element.

See: Casting from an XML media type

err:XC0076
It is a dynamic error if the comparison method specified in p:compare is not
supported by the implementation.

See: p:compare

err:XC0077
It is a dynamic error if the media types of the documents supplied are
incompatible with the comparison method.

See: p:compare

92

3. Step Errors

err:XC0078
It is a dynamic error if the value associated with the “fail-on-timeout” is
associated with true() and a HTTP status code 408 is encountered.

See: p:http-request

err:XC0079
It is a dynamic error if the map parameters contains an entry whose key is
defined by the implementation and whose value is not valid for that key.

See: p:archive, p:archive-manifest, p:cast-content-type, p:compress, p:unarchive,
p:uncompress

err:XC0080
It is a dynamic error if the number of documents on the archive does not match
the expected number of archive input documents for the given format and
command.

See: Handling of ZIP archives

err:XC0081
It is a dynamic error if the format of the archive does not match the format as
specified in the format option.

See: p:archive

err:XC0084
It is a dynamic error if two or more documents appear on the p:archive step's
source port that have the same base URI or if any document that appears on the
source port has no base URI.

See: p:archive

err:XC0085
It is a dynamic error if the format of the archive does not match the specified
format, cannot be understood, determined and/or processed.

See: p:archive, p:archive-manifest, p:unarchive

err:XC0092
It is a dynamic error if as a consequence of changing or removing the namespace
of an attribute the attribute's name is not unique on the respective element.

93

3. Step Errors

See: p:namespace-rename

err:XC0093
It is a dynamic error if a static error occurs during the static analysis of the XSLT
stylesheet.

See: p:xslt

err:XC0094
It is a dynamic error if any document supplied on the source port is not an XML
document, an HTML documents, or a Text document if XSLT 2.0 is used.

See: Invoking an XSLT 2.0 stylesheet

err:XC0095
It is a dynamic error if an error occurred during the transformation.

See: p:xslt

err:XC0096
It is a dynamic error if the transformation is terminated by XSLT message
termination.

See: p:xslt

err:XC0098
It is a dynamic error if a dynamic XPath error occurred while applying sort-key
to a line.

See: p:text-sort

err:XC0099
It is a dynamic error if the result of applying sort-key to a given line results in a
sequence with more than one item.

See: p:text-sort

err:XC0100
It is a dynamic error if the document on port manifest does not conform to the
given schema.

See: p:archive

94

3. Step Errors

err:XC0101
It is a dynamic error if a document appearing on port source cannot be
represented in the XDM version associated with the chosen XQuery version, e.g.
when a JSON document contains a map and XDM 3.0 is used.

See: p:xquery

err:XC0102
It is a dynamic error if any key in option parameters is associated to a value that
cannot be represented in the XDM version associated with the chosen XQuery
version, e.g. with a map, an array, or a function when XDM 3.0 is used.

See: p:xquery

err:XC0103
It is a dynamic error if any error occurs during XQuery’s static analysis phase.

See: p:xquery

err:XC0104
It is a dynamic error if any error occurs during XQuery’s dynamic evaluation
phase.

See: p:xquery

err:XC0105
It is a dynamic error if an XSLT 1.0 stylesheet is invoked and option parameters
contains a value that is not an atomic value or a node.

See: Invoking an XSLT 1.0 stylesheet

err:XC0106
It is a dynamic error if duplicate keys are encountered and option duplicates has
value “reject”.

See: p:json-merge

err:XC0107
It is a dynamic error if a document of a not supported document type appears on
port source of p:json-merge.

See: p:json-merge

95

3. Step Errors

err:XC0108
It is a dynamic error if any prefix is not in-scope at the point where the
p:namespace-delete occurs.

See: p:namespace-delete

err:XC0109
It is a dynamic error if a namespace is to be removed from an attribute and the
element already has an attribute with the resulting name.

See: p:namespace-delete

err:XC0110
It is a dynamic error if the evaluation of the XPath expression in option key for a
given item returns either a sequence, an array, a map, or a function.

See: p:json-merge

err:XC0111
It is a dynamic error if a document of an unsupported document type appears
on port source of p:json-join.

See: p:json-join

err:XC0112
It is a dynamic error if more than one document appears on the port manifest.

See: p:archive

err:XC0118
It is a dynamic error if an archive manifest is invalid according to the
specification.

See: The archive manifest

err:XC0119
It is a dynamic error if flatten is neither “unbounded”, nor a string that may be
cast to a non-negative integer.

See: p:json-join

96

3. Step Errors

err:XC0120
It is a dynamic error if the relative-to option is not present and the document on
the source port does not have a base URI.

See: p:archive-manifest, p:unarchive

err:XC0121
It is a dynamic error if a document appearing on the secondary port has a base
URI that is not both absolute and valid according to .

See: Invoking an XSLT 3.0 stylesheet, Invoking an XSLT 2.0 stylesheet

err:XC0122
It is a dynamic error if the given method is not supported.

See: p:http-request

err:XC0123
It is a dynamic error if any key in the “auth” map is associated with a value that
is not an instance of the required type.

See: p:http-request

err:XC0124
It is a dynamic error if any key in the “parameters” map is associated with a
value that is not an instance of the required type.

See: p:http-request

err:XC0125
It is a dynamic error if the key “accept-multipart” as the value false() and a
multipart response is detected.

See: p:http-request

err:XC0126
It is a dynamic error if the XPath expression in assert evaluates to false.

See: p:http-request

err:XC0127
It is a dynamic error if the headers map contains two keys that are the same
when compared in a case-insensitive manner.

97

3. Step Errors

See: p:http-request

err:XC0128
It is a dynamic error if the URI’s scheme is unknown or not supported.

See: p:http-request

err:XC0131
It is a dynamic error if the processor cannot support the requested encoding.

See: p:http-request

err:XC0132
It is a dynamic error if the override content encoding cannot be supported.

See: p:http-request

err:XC0133
It is a dynamic error if more than one document appears on the source port and
a content-type header is present and the content type specified is not a multipart
content type.

See: Construction of a multipart request

err:XC0146
It is a dynamic error if the specified value for the override-content-types option
is not an array of arrays, where the inner arrays have exactly two members of
type xs:string.

See: Overriding content types

err:XC0147
It is a dynamic error if the specified value is not a valid XPath regular
expression.

See: Overriding content types, p:text-replace, p:unarchive

err:XC0150
It is a dynamic error if evaluating the XPath expression in option test on a
context document results in an error.

See: p:split-sequence

98

3. Step Errors

err:XC0201
It is a dynamic error if the p:uncompress step cannot perform the requested
content-type cast.

See: p:uncompress

err:XC0202
It is a dynamic error if the compression format cannot be understood,
determined and/or processed.

See: p:compress, p:uncompress

err:XC0203
It is a dynamic error if the specified boundary is not valid (for example, if it
begins with two hyphens “--”).

See: Construction of a multipart request

A. Conformance
Conformant processors must implement all of the features described in this
specification except those that are explicitly identified as optional.

Some aspects of processor behavior are not completely specified; those features are
either implementation-dependent or implementation-defined.

[Definition: An implementation-dependent feature is one where the implementation has
discretion in how it is performed. Implementations are not required to document or
explain how implementation-dependent features are performed.]

[Definition: An implementation-defined feature is one where the implementation has
discretion in how it is performed. Conformant implementations must document how
implementation-defined features are performed.]

A.1. Implementation-defined features
The following features are implementation-defined:

99

A. Conformance

1. The list of formats supported by the p:archive step is implementation-defined.
See Section 2.3, “p:archive”.

2. The list of archive formats that can be modified by p:archive is implementation-
defined. See Section 2.3, “p:archive”.

3. The semantics of any additional attributes, elements and their values are
implementation-defined. See Section 2.3, “p:archive”.

4. It is implementation-defined what other formats are supported. See Section 2.3,
“p:archive”.

5. The semantics of the keys and the allowed values for these keys are
implementation-defined. See Section 2.3, “p:archive”.

6. It is implementation-defined what other formats are supported. See Section 2.3,
“p:archive”.

7. It is implementation-defined how the step determines the archive's format. See
Section 2.3, “p:archive”.

8. The c:archive root element may contain additional implementation-defined
attributes. See Section 2.3.1, “The archive manifest”.

9. The default compression method is implementation-defined. See Section 2.3.1,
“The archive manifest”.

10. It is implementation-defined what other compression methods are supported.
See Section 2.3.1, “The archive manifest”.

11. The default compression method is implementation-defined. See Section 2.3.1,
“The archive manifest”.

12. It is implementation-defined what compression levels are supported. See
Section 2.3.1, “The archive manifest”.

13. The c:entry elements may contain additional implementation-defined attributes.
See Section 2.3.1, “The archive manifest”.

14. The p:archive step may support additional, implementation-defined commands
for ZIP files. See Section 2.3.2, “Handling of ZIP archives”.

15. The actual parameter names supported by p:archive for a particular format are
implementation-defined. See Section 2.3.2, “Handling of ZIP archives”.

16. It is implementation-defined what other formats are supported. See Section 2.4,
“p:archive-manifest”.

100

A.1. Implementation-defined features

17. It is implementation-defined how the step determines the archive's format. See
Section 2.4, “p:archive-manifest”.

18. The semantics of the keys and the allowed values for these keys are
implementation-defined. See Section 2.4, “p:archive-manifest”.

19. Additional information provided for entries in p:archive-manifest is
implementation-defined. See Section 2.4, “p:archive-manifest”.

20. The semantics of the keys and the allowed values for these keys are
implementation-defined. See Section 2.5, “p:cast-content-type”.

21. The precise nature of the conversion from XML to JSON is implementation-
defined. See Section 2.5.1, “Casting from an XML media type”.

22. Casting from an XML media type to any other media type when the input
document is not a c:data document is implementation-defined. See Section 2.5.1,
“Casting from an XML media type”.

23. Casting from an HTML media type to a JSON media type is implementation-
defined. See Section 2.5.2, “Casting from an HTML media type”.

24. Casting from an HTML media type to any other media type is implementation-
defined. See Section 2.5.2, “Casting from an HTML media type”.

25. It is implementation-defined whether other result formats are supported. See
Section 2.5.3, “Casting from a JSON media type”.

26. Casting from a JSON media type to an HTML media type is implementation-
defined. See Section 2.5.3, “Casting from a JSON media type”.

27. Casting from a JSON media type to any other media type is implementation-
defined. See Section 2.5.3, “Casting from a JSON media type”.

28. The precise way in which text documents are parsed into the XPath data model
is implementation-defined. See Section 2.5.4, “Casting from a text media type”.

29. Casting from a text media type to any other media type is implementation-
defined. See Section 2.5.4, “Casting from a text media type”.

30. Casting from any other media type to a HTML media type, a JSON media type
or a text document is implementation-defined. See Section 2.5.5, “Casting from
any other media type”.

31. Casting from any other media type to any other media type is implementation-
defined. See Section 2.5.5, “Casting from any other media type”.

101

A.1. Implementation-defined features

32. Implementations of p:compare must support the deep-equal method; other
supported methods are implementation-defined. See Section 2.6, “p:compare”.

33. If fail-if-not-equal is false, and the documents differ, an implementation-defined
summary of the differences between the two documents may appear on the
differences port. See Section 2.6, “p:compare”.

34. It is implementation-defined what other formats are supported. See Section 2.7,
“p:compress”.

35. The semantics of the keys and the allowed values for these keys are
implementation-defined. See Section 2.7, “p:compress”.

36. It is implementation-defined what other algorithms are supported. See
Section 2.12, “p:hash”.

37. It is implementation-defined how a multipart boundary is constructed. See
Section 2.13.1, “Construction of a multipart request”.

38. In the absence of an explicit type, the content type is implementation-defined See
Section 2.19, “p:load”.

39. Additional XML parameters are implementation-defined. See Section 2.19.1,
“Loading XML data”.

40. Text parameters are implementation-defined. See Section 2.19.2, “Loading text
data”.

41. Additional JSON parameters are implementation-defined. See Section 2.19.3,
“Loading JSON data”.

42. The precise way in which HTML documents are parsed into the XPath data
model is implementation-defined. See Section 2.19.4, “Loading HTML data”.

43. HTML parameters are implementation-defined. See Section 2.19.4, “Loading
HTML data”.

44. How a processor interprets other media types is implementation-defined. See
Section 2.19.5, “Loading binary data”.

45. Parameters for other media types are implementation-defined. See
Section 2.19.5, “Loading binary data”.

46. Support for other collations is implementation-defined. See Section 2.36, “p:text-
sort”.

102

A.1. Implementation-defined features

47. It is implementation-defined what other formats are supported. See Section 2.38,
“p:unarchive”.

48. It is implementation-defined how the step determines the archive's format. See
Section 2.38, “p:unarchive”.

49. The semantics of the keys and the allowed values for these keys are
implementation-defined. See Section 2.38, “p:unarchive”.

50. It is implementation-defined what other formats are supported. See Section 2.39,
“p:uncompress”.

51. It is implementation-defined how the step determines the compression format.
See Section 2.39, “p:uncompress”.

52. The semantics of the keys and the allowed values for these keys are
implementation-defined. See Section 2.39, “p:uncompress”.

53. If the version is not specified, the version of UUID computed is implementation-
defined. See Section 2.41, “p:uuid”.

54. Support for other versions of UUID, and the mechanism by which the necessary
inputs are made available for computing other versions, is implementation-
defined. See Section 2.41, “p:uuid”.

55. Support for XQueryX is implementation-defined. See Section 2.47, “p:xquery”.
56. The point in time returned as the current dateTime is implementation-defined.

See Section 2.47, “p:xquery”.
57. The implicit timezone is implementation-defined. See Section 2.47, “p:xquery”.
58. It is implementation-defined which XSLT version(s) is/are supported. See

Section 2.48, “p:xslt”.
59. Whether static parameters are supported is implementation-defined and

depends on the XSLT version (which must be 3.0 or higher). See Section 2.48,
“p:xslt”.

A.2. Implementation-dependent features
The following features are implementation-dependent:

103

A.2. Implementation-dependent features

1. If the IRI reference specified by the base-uri option on p:make-absolute-uris is
absent and the input document has no base URI, the results are implementation-
dependent. See Section 2.20, “p:make-absolute-uris”.

2. The set of available documents (those that may be retrieved with a URI) is
implementation-dependent. See Section 2.47, “p:xquery”.

3. The set of available collections is implementation-dependent. See Section 2.47,
“p:xquery”.

4. How XSLT message termination errors are reported to the XProc processor is
implementation-dependent. See Section 2.48, “p:xslt”.

B. References

B.1. Normative References
[XProc 3.0] XProc 3.0: An XML Pipeline Language. Norman Walsh, Achim Berndzen,
Gerrit Imsieke and Erik Siegel, editors.

[W3C XML Schema: Part 2] XML Schema Part 2: Datatypes Second Edition. Paul V.
Biron and Ashok Malhotra, editors. World Wide Web Consortium, 28 October 2004.

[XPath 3.1] XML Path Language (XPath) 3.1. Jonathan Robie, Michael Dyck, Josh
Spiegel, editors. W3C Recommendation. 21 March 2017.

[XPath and XQuery Functions and Operators 3.1] XPath and XQuery Functions and
Operators 3.1. Michael Kay, editor. W3C Recommendation. 21 March 2017

[XSLT 3.0] XSL Transformations (XSLT) Version 3.0. Michael Kay, editor. W3C
Recommendation. 8 June 2017.

[XInclude] XML Inclusions (XInclude) Version 1.0 (Second Edition). Jonathan Marsh,
David Orchard, and Daniel Veillard, editors. W3C Recommendation. 15 November
2006.

[RFC 1321] RFC 1321: The MD5 Message-Digest Algorithm. R. Rivest. Network
Working Group, IETF, April 1992.

104

B. References

https://spec.xproc.org/3.0/xproc/
https://www.w3.org/TR/xmlschema-2/
https://www.w3.org/TR/xpath31/
https://www.w3.org/TR/xpath-functions-31/
https://www.w3.org/TR/xpath-functions-31/
https://www.w3.org/TR/xslt-30/
https://www.w3.org/TR/xinclude/
https://doi.org/10.17487/RFC1321

[RFC 1521] RFC 1521: MIME (Multipurpose Internet Mail Extensions) Part One:
Mechanisms for Specifying and Describing the Format of Internet Message Bodies. N.
Borenstein. Network Working Group, IETF, September 1993.

[RFC 2046] RFC 2046: Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types. N. Freed, N. Borenstein, editors. Internet Engineering Task Force. November,
1996.

[RFC 2119] Key words for use in RFCs to Indicate Requirement Levels. S. Bradner.
Network Working Group, IETF, Mar 1997.

[RFC 2617] RFC 2617: HTTP Authentication: Basic and Digest Access Authentication. J.
Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, L. Stewart.
June, 1999 .

[RFC 3986] RFC 3986: Uniform Resource Identifier (URI): General Syntax. T. Berners-Lee,
R. Fielding, and L. Masinter, editors. Internet Engineering Task Force. January, 2005.

[UUID] ITU X.667: Information technology - Open Systems Interconnection - Procedures
for the operation of OSI Registration Authorities: Generation and registration of Universally
Unique Identifiers (UUIDs) and their use as ASN.1 Object Identifier components. 2004.

[SHA1] Federal Information Processing Standards Publication 180-1: Secure Hash Standard.
1995.

[CRC32] “32-Bit Cyclic Redundancy Codes for Internet Applications”, The
International Conference on Dependable Systems and Networks: 459. 10.1109/
DSN.2002.1028931. P. Koopman. June 2002.

[ZIP] .ZIP File Format Specification.

[GZIP] GZIP file format specification version 4.3.

C. Glossary
dynamic error

A dynamic error is one which occurs while a pipeline is being evaluated.

105

C. Glossary

https://doi.org/10.17487/RFC1521
https://doi.org/10.17487/RFC1521
https://doi.org/10.17487/RFC2046
https://doi.org/10.17487/RFC2046
https://doi.org/10.17487/RFC2119
https://doi.org/10.17487/RFC2617
https://doi.org/10.17487/RFC3986
https://www.itu.int/ITU-T/studygroups/com17/oid.html
https://www.itu.int/ITU-T/studygroups/com17/oid.html
https://www.itu.int/ITU-T/studygroups/com17/oid.html
https://csrc.nist.gov/publications/detail/fips/180/1/archive/1995-04-17
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://tools.ietf.org/html/rfc1952

implementation-defined
An implementation-defined feature is one where the implementation has discretion
in how it is performed. Conformant implementations must document how
implementation-defined features are performed.

implementation-dependent
An implementation-dependent feature is one where the implementation has
discretion in how it is performed. Implementations are not required to document
or explain how implementation-dependent features are performed.

D. Ancillary files
This specification includes by reference a number of ancillary files.

steps.xpl
An XProc step library for the declared steps.

E. Credits
This document is derived from XProc: An XML Pipeline Language published by the
W3C. It was developed by the XML Processing Model Working Group and edited by
Norman Walsh, Alex Miłowski, and Henry Thompson.

The editors of this specification extend their gratitude to everyone who contributed
to this document and all of the versions that came before it.

F. Change Log
This appendix catalogs non-editorial changes made after the August 2020 “last call”
draft:

1. Clarified that the manifest has precedence in the p:archive step. (issue 462.)

2. Changed the type of several options from xs:token to xs:string (issue 490.)

106

D. Ancillary files

https://www.w3.org/TR/2010/REC-xproc-20100511/
https://spec.xproc.org/lastcall-2020-08/head/steps/
https://github.com/xproc/3.0-steps/issues/462
https://github.com/xproc/3.0-steps/issues/490

3. Changed the type of the parameters option from
map(xs:string,xs:untypedAtomic+) to
map(xs:string,xs:anyAtomicType+). (issue 491.)

These are the non-editorial changes made after the February 2020 “last call” draft:

1. For p:cast-content-type the expected result type for casting a c:param-set
document to “application/json” was specified as map(xs:QName,
xs:string). (2020-03-15)

2. In p:http-request, instead of using all document properties (with a few
explicit exceptions) as headers, only document properties in the http://
www.w3.org/ns/xproc-http namespace will be used. (2020-03-18)

3. Section 2.3.1, “The archive manifest”: An attribute c:entry/@content-type was
added to the archive manifest, to be filled by the p:archive-manifest step.
(2020-03-20)

4. A static-parameters was added to p:xslt. (2020-03-23)

5. The override-content-types option was added to p:archive-manifest and
p:unarchive. (2020-03-30)

6. Clarified the regular expression matching for p:text-replace and
p:unarchive. Added an error code for invalid regular expressions. (2020-04-02)

7. Replaced errors XC0070 and XC0130 with XD0079. (2020-04-09)

8. Changed signature of p:split-sequence so that any document can appear one
port source. (2020-05-22)

9. Change the behavior of the global-context-item option of p:xslt.
(2020-06-10)

10. Clarified which steps may produce PSVI annotations. (2020-06-09)

11. Clarified the behaviour in p:archive: A missing resource referenced by
c:archive/c:entry/@href is only an error for command = 'create'. (2020-06-11)

12. Option populate-default-collection is added to the signature of p:xslt.
(2020-06-20)

107

F. Change Log

https://github.com/xproc/3.0-steps/issues/491
https://spec.xproc.org/lastcall-2020-02/head/steps/

13. Clarified how the default content-type header of p:http-request is
constructed if a single document appears on source port. (2020-06-20)

14. Added error (XD0079) to p:http-request and p:load for invalid content-types.
(2020-06-23)

15. Changed signature of the result port of p:load to sequence="false" and
adapted the prose accordingly. (2020-06-24)

108

F. Change Log

